Abstract:The synthetic control method (SCM) estimates causal effects in panel data with a single-treated unit by constructing a counterfactual outcome as a weighted combination of untreated control units that matches the pre-treatment trajectory. In this paper, we introduce the targeted synthetic control (TSC) method, a new two-stage estimator that directly estimates the counterfactual outcome. Specifically, our TSC method (1) yields a targeted debiasing estimator, in the sense that the targeted updating refines the initial weights to produce more stable weights; and (2) ensures that the final counterfactual estimation is a convex combination of observed control outcomes to enable direct interpretation of the synthetic control weights. TSC is flexible and can be instantiated with arbitrary machine learning models. Methodologically, TSC starts from an initial set of synthetic-control weights via a one-dimensional targeted update through the weight-tilting submodel, which calibrates the weights to reduce bias of weights estimation arising from pre-treatment fit. Furthermore, TSC avoids key shortcomings of existing methods (e.g., the augmented SCM), which can produce unbounded counterfactual estimates. Across extensive synthetic and real-world experiments, TSC consistently improves estimation accuracy over state-of-the-art SCM baselines.
Abstract:Many decision-making problems require ranking individuals by their treatment effects rather than estimating the exact effect magnitudes. Examples include prioritizing patients for preventive care interventions, or ranking customers by the expected incremental impact of an advertisement. Surprisingly, while causal effect estimation has received substantial attention in the literature, the problem of directly learning rankings of treatment effects has largely remained unexplored. In this paper, we introduce Rank-Learner, a novel two-stage learner that directly learns the ranking of treatment effects from observational data. We first show that naive approaches based on precise treatment effect estimation solve a harder problem than necessary for ranking, while our Rank-Learner optimizes a pairwise learning objective that recovers the true treatment effect ordering, without explicit CATE estimation. We further show that our Rank-Learner is Neyman-orthogonal and thus comes with strong theoretical guarantees, including robustness to estimation errors in the nuisance functions. In addition, our Rank-Learner is model-agnostic, and can be instantiated with arbitrary machine learning models (e.g., neural networks). We demonstrate the effectiveness of our method through extensive experiments where Rank-Learner consistently outperforms standard CATE estimators and non-orthogonal ranking methods. Overall, we provide practitioners with a new, orthogonal two-stage learner for ranking individuals by their treatment effects.
Abstract:Estimating treatment effects in networks is challenging, as each potential outcome depends on the treatments of all other nodes in the network. To overcome this difficulty, existing methods typically impose an exposure mapping that compresses the treatment assignments in the network into a low-dimensional summary. However, if this mapping is misspecified, standard estimators for direct and spillover effects can be severely biased. We propose a novel partial identification framework for causal inference on networks to assess the robustness of treatment effects under misspecifications of the exposure mapping. Specifically, we derive sharp upper and lower bounds on direct and spillover effects under such misspecifications. As such, our framework presents a novel application of causal sensitivity analysis to exposure mappings. We instantiate our framework for three canonical exposure settings widely used in practice: (i) weighted means of the neighborhood treatments, (ii) threshold-based exposure mappings, and (iii) truncated neighborhood interference in the presence of higher-order spillovers. Furthermore, we develop orthogonal estimators for these bounds and prove that the resulting bound estimates are valid, sharp, and efficient. Our experiments show the bounds remain informative and provide reliable conclusions under misspecification of exposure mappings.
Abstract:Evaluating the performance of large language models (LLMs) from human preference data is crucial for obtaining LLM leaderboards. However, many existing approaches either rely on restrictive parametric assumptions or lack valid uncertainty quantification when flexible machine learning methods are used. In this paper, we propose a nonparametric statistical framework, DMLEval, for comparing and ranking LLMs from preference data using debiased machine learning (DML). For this, we introduce generalized average ranking scores (GARS), which generalize commonly used ranking models, including the Bradley-Terry model or PageRank/ Rank centrality, with complex human responses such as ties. DMLEval comes with the following advantages: (i) It produces statistically efficient estimates of GARS ranking scores. (ii) It naturally allows the incorporation of black-box machine learning methods for estimation. (iii) It can be combined with pre-trained LLM evaluators (e.g., using LLM-as-a-judge). (iv) It suggests optimal policies for collecting preference data under budget constraints. We demonstrate these advantages both theoretically and empirically using both synthetic and real-world preference datasets. In summary, our framework provides practitioners with powerful, state-of-the-art methods for comparing or ranking LLMs.
Abstract:Venture capital (VC) investments in early-stage startups that end up being successful can yield high returns. However, predicting early-stage startup success remains challenging due to data scarcity (e.g., many VC firms have information about only a few dozen of early-stage startups and whether they were successful). This limits the effectiveness of traditional machine learning methods that rely on large labeled datasets for model training. To address this challenge, we propose an in-context learning framework for startup success prediction using large language models (LLMs) that requires no model training and leverages only a small set of labeled startups as demonstration examples. Specifically, we propose a novel k-nearest-neighbor-based in-context learning framework, called kNN-ICL, which selects the most relevant past startups as examples based on similarity. Using real-world profiles from Crunchbase, we find that the kNN-ICL approach achieves higher prediction accuracy than supervised machine learning baselines and vanilla in-context learning. Further, we study how performance varies with the number of in-context examples and find that a high balanced accuracy can be achieved with as few as 50 examples. Together, we demonstrate that in-context learning can serve as a decision-making tool for VC firms operating in data-scarce environments.




Abstract:Structural nested mean models (SNMMs) are a principled approach to estimate the treatment effects over time. A particular strength of SNMMs is to break the joint effect of treatment sequences over time into localized, time-specific ``blip effects''. This decomposition promotes interpretability through the incremental effects and enables the efficient offline evaluation of optimal treatment policies without re-computation. However, neural frameworks for SNMMs are lacking, as their inherently sequential g-estimation scheme prevents end-to-end, gradient-based training. Here, we propose DeepBlip, the first neural framework for SNMMs, which overcomes this limitation with a novel double optimization trick to enable simultaneous learning of all blip functions. Our DeepBlip seamlessly integrates sequential neural networks like LSTMs or transformers to capture complex temporal dependencies. By design, our method correctly adjusts for time-varying confounding to produce unbiased estimates, and its Neyman-orthogonal loss function ensures robustness to nuisance model misspecification. Finally, we evaluate our DeepBlip across various clinical datasets, where it achieves state-of-the-art performance.
Abstract:Online ratings influence customer decision-making, yet standard aggregation methods, such as the sample mean, fail to adapt to quality changes over time and ignore review heterogeneity (e.g., review sentiment, a review's helpfulness). To address these challenges, we demonstrate the value of using the Gaussian process (GP) framework for rating aggregation. Specifically, we present a tailored GP model that captures the dynamics of ratings over time while additionally accounting for review heterogeneity. Based on 121,123 ratings from Yelp, we compare the predictive power of different rating aggregation methods in predicting future ratings, thereby finding that the GP model is considerably more accurate and reduces the mean absolute error by 10.2% compared to the sample mean. Our findings have important implications for marketing practitioners and customers. By moving beyond means, designers of online reputation systems can display more informative and adaptive aggregated rating scores that are accurate signals of expected customer satisfaction.
Abstract:Survival analysis is a cornerstone of clinical research by modeling time-to-event outcomes such as metastasis, disease relapse, or patient death. Unlike standard tabular data, survival data often come with incomplete event information due to dropout, or loss to follow-up. This poses unique challenges for synthetic data generation, where it is crucial for clinical research to faithfully reproduce both the event-time distribution and the censoring mechanism. In this paper, we propose SurvDiff, an end-to-end diffusion model specifically designed for generating synthetic data in survival analysis. SurvDiff is tailored to capture the data-generating mechanism by jointly generating mixed-type covariates, event times, and right-censoring, guided by a survival-tailored loss function. The loss encodes the time-to-event structure and directly optimizes for downstream survival tasks, which ensures that SurvDiff (i) reproduces realistic event-time distributions and (ii) preserves the censoring mechanism. Across multiple datasets, we show that \survdiff consistently outperforms state-of-the-art generative baselines in both distributional fidelity and downstream evaluation metrics across multiple medical datasets. To the best of our knowledge, SurvDiff is the first diffusion model explicitly designed for generating synthetic survival data.
Abstract:Estimating treatment effects is crucial for personalized decision-making in medicine, but this task faces unique challenges in clinical practice. At training time, models for estimating treatment effects are typically trained on well-structured medical datasets that contain detailed patient information. However, at inference time, predictions are often made using textual descriptions (e.g., descriptions with self-reported symptoms), which are incomplete representations of the original patient information. In this work, we make three contributions. (1) We show that the discrepancy between the data available during training time and inference time can lead to biased estimates of treatment effects. We formalize this issue as an inference time text confounding problem, where confounders are fully observed during training time but only partially available through text at inference time. (2) To address this problem, we propose a novel framework for estimating treatment effects that explicitly accounts for inference time text confounding. Our framework leverages large language models together with a custom doubly robust learner to mitigate biases caused by the inference time text confounding. (3) Through a series of experiments, we demonstrate the effectiveness of our framework in real-world applications.
Abstract:Prior-data fitted networks (PFNs) have recently been proposed as a promising way to train tabular foundation models. PFNs are transformers that are pre-trained on synthetic data generated from a prespecified prior distribution and that enable Bayesian inference through in-context learning. In this paper, we introduce CausalFM, a comprehensive framework for training PFN-based foundation models in various causal inference settings. First, we formalize the construction of Bayesian priors for causal inference based on structural causal models (SCMs) in a principled way and derive necessary criteria for the validity of such priors. Building on this, we propose a novel family of prior distributions using causality-inspired Bayesian neural networks that enable CausalFM to perform Bayesian causal inference in various settings, including back-door, front-door, and instrumental variable adjustment. Finally, we instantiate CausalFM and explicitly train a foundation model for estimating conditional average treatment effects (CATEs) using back-door adjustment. We show that CausalFM performs competitively for CATE estimation using various synthetic and semi-synthetic benchmarks. In sum, our framework can be used as a general recipe to train foundation models for various causal inference settings. In contrast to the current state-of-the-art in causal inference, CausalFM offers a novel paradigm with the potential to fundamentally change how practitioners perform causal inference in medicine, economics, and other disciplines.