Abstract:Video Large Language Models (Video LLMs) have achieved impressive performance on video-and-language tasks, such as video question answering. However, most existing Video LLMs neglect temporal information in video data, leading to struggles with temporal-aware video understanding. To address this gap, we propose a Time Gating Video LLM (TG-Vid) designed to enhance temporal modeling through a novel Time Gating module (TG). The TG module employs a time gating mechanism on its sub-modules, comprising gating spatial attention, gating temporal attention, and gating MLP. This architecture enables our model to achieve a robust understanding of temporal information within videos. Extensive evaluation of temporal-sensitive video benchmarks (i.e., MVBench, TempCompass, and NExT-QA) demonstrates that our TG-Vid model significantly outperforms the existing Video LLMs. Further, comprehensive ablation studies validate that the performance gains are attributed to the designs of our TG module. Our code is available at https://github.com/LaVi-Lab/TG-Vid.
Abstract:Building a generalist agent that can interact with the world is the intriguing target of AI systems, thus spurring the research for embodied navigation, where an agent is required to navigate according to instructions or respond to queries. Despite the major progress attained, previous works primarily focus on task-specific agents and lack generalizability to unseen scenarios. Recently, LLMs have presented remarkable capabilities across various fields, and provided a promising opportunity for embodied navigation. Drawing on this, we propose the first generalist model for embodied navigation, NaviLLM. It adapts LLMs to embodied navigation by introducing schema-based instruction. The schema-based instruction flexibly casts various tasks into generation problems, thereby unifying a wide range of tasks. This approach allows us to integrate diverse data sources from various datasets into the training, equipping NaviLLM with a wide range of capabilities required by embodied navigation. We conduct extensive experiments to evaluate the performance and generalizability of our model. The experimental results demonstrate that our unified model achieves state-of-the-art performance on CVDN, SOON, and ScanQA. Specifically, it surpasses the previous stats-of-the-art method by a significant margin of 29% in goal progress on CVDN. Moreover, our model also demonstrates strong generalizability and presents impressive results on unseen tasks, e.g., embodied question answering and 3D captioning.
Abstract:With the recent significant advancements in large multi-modal models (LMMs), the importance of their grounding capability in visual chat is increasingly recognized. Despite recent efforts to enable LMMs to support grounding, their capabilities for grounding and chat are usually separate, and their chat performance drops dramatically when asked to ground. The problem is the lack of a dataset for grounded visual chat (GVC). Existing grounding datasets only contain short captions. To address this issue, we have created GVC data that allows for the combination of grounding and chat capabilities. To better evaluate the GVC capabilities, we have introduced a benchmark called Grounding-Bench. Additionally, we have proposed a model design that can support GVC and various types of visual prompts by connecting segmentation models with language models. Experimental results demonstrate that our model outperforms other LMMs on Grounding-Bench. Furthermore, our model achieves competitive performance on classic grounding benchmarks like RefCOCO/+/g and Flickr30K Entities. Our code will be released at https://github.com/UX-Decoder/LLaVA-Grounding .
Abstract:With the continuous emergence of Chinese Large Language Models (LLMs), how to evaluate a model's capabilities has become an increasingly significant issue. The absence of a comprehensive Chinese benchmark that thoroughly assesses a model's performance, the unstandardized and incomparable prompting procedure, and the prevalent risk of contamination pose major challenges in the current evaluation of Chinese LLMs. We present CLEVA, a user-friendly platform crafted to holistically evaluate Chinese LLMs. Our platform employs a standardized workflow to assess LLMs' performance across various dimensions, regularly updating a competitive leaderboard. To alleviate contamination, CLEVA curates a significant proportion of new data and develops a sampling strategy that guarantees a unique subset for each leaderboard round. Empowered by an easy-to-use interface that requires just a few mouse clicks and a model API, users can conduct a thorough evaluation with minimal coding. Large-scale experiments featuring 23 influential Chinese LLMs have validated CLEVA's efficacy.
Abstract:We present a mask-piloted Transformer which improves masked-attention in Mask2Former for image segmentation. The improvement is based on our observation that Mask2Former suffers from inconsistent mask predictions between consecutive decoder layers, which leads to inconsistent optimization goals and low utilization of decoder queries. To address this problem, we propose a mask-piloted training approach, which additionally feeds noised ground-truth masks in masked-attention and trains the model to reconstruct the original ones. Compared with the predicted masks used in mask-attention, the ground-truth masks serve as a pilot and effectively alleviate the negative impact of inaccurate mask predictions in Mask2Former. Based on this technique, our \M achieves a remarkable performance improvement on all three image segmentation tasks (instance, panoptic, and semantic), yielding $+2.3$AP and $+1.6$mIoU on the Cityscapes instance and semantic segmentation tasks with a ResNet-50 backbone. Our method also significantly speeds up the training, outperforming Mask2Former with half of the number of training epochs on ADE20K with both a ResNet-50 and a Swin-L backbones. Moreover, our method only introduces little computation during training and no extra computation during inference. Our code will be released at \url{https://github.com/IDEA-Research/MP-Former}.
Abstract:In this paper, we study the problem of visual grounding by considering both phrase extraction and grounding (PEG). In contrast to the previous phrase-known-at-test setting, PEG requires a model to extract phrases from text and locate objects from images simultaneously, which is a more practical setting in real applications. As phrase extraction can be regarded as a $1$D text segmentation problem, we formulate PEG as a dual detection problem and propose a novel DQ-DETR model, which introduces dual queries to probe different features from image and text for object prediction and phrase mask prediction. Each pair of dual queries is designed to have shared positional parts but different content parts. Such a design effectively alleviates the difficulty of modality alignment between image and text (in contrast to a single query design) and empowers Transformer decoder to leverage phrase mask-guided attention to improve performance. To evaluate the performance of PEG, we also propose a new metric CMAP (cross-modal average precision), analogous to the AP metric in object detection. The new metric overcomes the ambiguity of Recall@1 in many-box-to-one-phrase cases in phrase grounding. As a result, our PEG pre-trained DQ-DETR establishes new state-of-the-art results on all visual grounding benchmarks with a ResNet-101 backbone. For example, it achieves $91.04\%$ and $83.51\%$ in terms of recall rate on RefCOCO testA and testB with a ResNet-101 backbone. Code will be availabl at \url{https://github.com/IDEA-Research/DQ-DETR}.
Abstract:Reference Expression Segmentation (RES) and Reference Expression Generation (REG) are mutually inverse tasks that can be naturally jointly trained. Though recent work has explored such joint training, the mechanism of how RES and REG can benefit each other is still unclear. In this paper, we propose a unified mutual supervision framework that enables two tasks to improve each other. Our mutual supervision contains two directions. On the one hand, Disambiguation Supervision leverages the expression unambiguity measurement provided by RES to enhance the language generation of REG. On the other hand, Generation Supervision uses expressions automatically generated by REG to scale up the training of RES. Such unified mutual supervision effectively improves two tasks by solving their bottleneck problems. Extensive experiments show that our approach significantly outperforms all existing methods on REG and RES tasks under the same setting, and detailed ablation studies demonstrate the effectiveness of all components in our framework.
Abstract:Camera-based 3D object detectors are welcome due to their wider deployment and lower price than LiDAR sensors. We revisit the prior stereo modeling DSGN about the stereo volume constructions for representing both 3D geometry and semantics. We polish the stereo modeling and propose our approach, DSGN++, aiming for improving information flow throughout the 2D-to-3D pipeline in the following three main aspects. First, to effectively lift the 2D information to stereo volume, we propose depth-wise plane sweeping (DPS) that allows denser connections and extracts depth-guided features. Second, for better grasping differently spaced features, we present a novel stereo volume -- Dual-view Stereo Volume (DSV) that integrates front-view and top-view features and reconstructs sub-voxel depth in the camera frustum. Third, as the foreground region becomes less dominant in 3D space, we firstly propose a multi-modal data editing strategy -- Stereo-LiDAR Copy-Paste, which ensures cross-modal alignment and improves data efficiency. Without bells and whistles, extensive experiments in various modality setups on the popular KITTI benchmark show that our method consistently outperforms other camera-based 3D detectors for all categories. Code will be released at https://github.com/chenyilun95/DSGN2.
Abstract:The 3D visual grounding task aims to ground a natural language description to the targeted object in a 3D scene, which is usually represented in 3D point clouds. Previous works studied visual grounding under specific views. The vision-language correspondence learned by this way can easily fail once the view changes. In this paper, we propose a Multi-View Transformer (MVT) for 3D visual grounding. We project the 3D scene to a multi-view space, in which the position information of the 3D scene under different views are modeled simultaneously and aggregated together. The multi-view space enables the network to learn a more robust multi-modal representation for 3D visual grounding and eliminates the dependence on specific views. Extensive experiments show that our approach significantly outperforms all state-of-the-art methods. Specifically, on Nr3D and Sr3D datasets, our method outperforms the best competitor by 11.2% and 7.1% and even surpasses recent work with extra 2D assistance by 5.9% and 6.6%. Our code is available at https://github.com/sega-hsj/MVT-3DVG.