Abstract:Large Language Models (LLMs) have become increasingly capable of handling diverse tasks with the aid of well-crafted prompts and integration of external tools, but as task complexity rises, the workflow involving LLMs can be complicated and thus challenging to implement and maintain. To address this challenge, we propose APPL, A Prompt Programming Language that acts as a bridge between computer programs and LLMs, allowing seamless embedding of prompts into Python functions, and vice versa. APPL provides an intuitive and Python-native syntax, an efficient parallelized runtime with asynchronous semantics, and a tracing module supporting effective failure diagnosis and replaying without extra costs. We demonstrate that APPL programs are intuitive, concise, and efficient through three representative scenarios: Chain-of-Thought with self-consistency (CoT-SC), ReAct tool use agent, and multi-agent chat. Experiments on three parallelizable workflows further show that APPL can effectively parallelize independent LLM calls, with a significant speedup ratio that almost matches the estimation.
Abstract:Large Language Models (LLMs) like GPT are state-of-the-art text generation models that provide significant assistance in daily routines. However, LLM execution is inherently sequential, since they only produce one token at a time, thus incurring low hardware utilization on modern GPUs. Batching and speculative decoding are two techniques to improve GPU hardware utilization in LLM inference. To study their synergy, we implement a prototype implementation and perform an extensive characterization analysis on various LLM models and GPU architectures. We observe that the optimal speculation length depends on the batch size used. We analyze the key observation and build a quantitative model to explain it. Based on our analysis, we propose a new adaptive speculative decoding strategy that chooses the optimal speculation length for different batch sizes. Our evaluations show that our proposed method can achieve equal or better performance than the state-of-the-art speculation decoding schemes with fixed speculation length.
Abstract:Graph neural networks (GNN) have shown great success in learning from graph-structured data. They are widely used in various applications, such as recommendation, fraud detection, and search. In these domains, the graphs are typically large, containing hundreds of millions of nodes and several billions of edges. To tackle this challenge, we develop DistDGL, a system for training GNNs in a mini-batch fashion on a cluster of machines. DistDGL is based on the Deep Graph Library (DGL), a popular GNN development framework. DistDGL distributes the graph and its associated data (initial features and embeddings) across the machines and uses this distribution to derive a computational decomposition by following an owner-compute rule. DistDGL follows a synchronous training approach and allows ego-networks forming the mini-batches to include non-local nodes. To minimize the overheads associated with distributed computations, DistDGL uses a high-quality and light-weight min-cut graph partitioning algorithm along with multiple balancing constraints. This allows it to reduce communication overheads and statically balance the computations. It further reduces the communication by replicating halo nodes and by using sparse embedding updates. The combination of these design choices allows DistDGL to train high-quality models while achieving high parallel efficiency and memory scalability. We demonstrate our optimizations on both inductive and transductive GNN models. Our results show that DistDGL achieves linear speedup without compromising model accuracy and requires only 13 seconds to complete a training epoch for a graph with 100 million nodes and 3 billion edges on a cluster with 16 machines.