Abstract:We introduces LLaST, a framework for building high-performance Large Language model based Speech-to-text Translation systems. We address the limitations of end-to-end speech translation(E2E ST) models by exploring model architecture design and optimization techniques tailored for LLMs. Our approach includes LLM-based speech translation architecture design, ASR-augmented training, multilingual data augmentation, and dual-LoRA optimization. Our approach demonstrates superior performance on the CoVoST-2 benchmark and showcases exceptional scaling capabilities powered by LLMs. We believe this effective method will serve as a strong baseline for speech translation and provide insights for future improvements of the LLM-based speech translation framework. We release the data, code and models in https://github.com/openaudiolab/LLaST.
Abstract:Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space $\mathbb R^d$ and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate $170$ ms of $24$ kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ .
Abstract:Current speaker recognition systems primarily rely on supervised approaches, constrained by the scale of labeled datasets. To boost the system performance, researchers leverage large pretrained models such as WavLM to transfer learned high-level features to the downstream speaker recognition task. However, this approach introduces extra parameters as the pretrained model remains in the inference stage. Another group of researchers directly apply self-supervised methods such as DINO to speaker embedding learning, yet they have not explored its potential on large-scale in-the-wild datasets. In this paper, we present the effectiveness of DINO training on the large-scale WenetSpeech dataset and its transferability in enhancing the supervised system performance on the CNCeleb dataset. Additionally, we introduce a confidence-based data filtering algorithm to remove unreliable data from the pretraining dataset, leading to better performance with less training data. The associated pretrained models, confidence files, pretraining and finetuning scripts will be made available in the Wespeaker toolkit.
Abstract:In human speech, the attitude of a speaker cannot be fully expressed only by the textual content. It has to come along with the intonation. Declarative questions are commonly used in daily Cantonese conversations, and they are usually uttered with rising intonation. Vanilla neural text-to-speech (TTS) systems are not capable of synthesizing rising intonation for these sentences due to the loss of semantic information. Though it has become more common to complement the systems with extra language models, their performance in modeling rising intonation is not well studied. In this paper, we propose to complement the Cantonese TTS model with a BERT-based statement/question classifier. We design different training strategies and compare their performance. We conduct our experiments on a Cantonese corpus named CanTTS. Empirical results show that the separate training approach obtains the best generalization performance and feasibility.
Abstract:Direct Speech-to-speech translation (S2ST) has drawn more and more attention recently. The task is very challenging due to data scarcity and complex speech-to-speech mapping. In this paper, we report our recent achievements in S2ST. Firstly, we build a S2ST Transformer baseline which outperforms the original Translatotron. Secondly, we utilize the external data by pseudo-labeling and obtain a new state-of-the-art result on the Fisher English-to-Spanish test set. Indeed, we exploit the pseudo data with a combination of popular techniques which are not trivial when applied to S2ST. Moreover, we evaluate our approach on both syntactically similar (Spanish-English) and distant (English-Chinese) language pairs. Our implementation is available at https://github.com/fengpeng-yue/speech-to-speech-translation.
Abstract:Self-supervised speech representation learning has shown promising results in various speech processing tasks. However, the pre-trained models, e.g., HuBERT, are storage-intensive Transformers, limiting their scope of applications under low-resource settings. To this end, we propose LightHuBERT, a once-for-all Transformer compression framework, to find the desired architectures automatically by pruning structured parameters. More precisely, we create a Transformer-based supernet that is nested with thousands of weight-sharing subnets and design a two-stage distillation strategy to leverage the contextualized latent representations from HuBERT. Experiments on automatic speech recognition (ASR) and the SUPERB benchmark show the proposed LightHuBERT enables over $10^9$ architectures concerning the embedding dimension, attention dimension, head number, feed-forward network ratio, and network depth. LightHuBERT outperforms the original HuBERT on ASR and five SUPERB tasks with the HuBERT size, achieves comparable performance to the teacher model in most tasks with a reduction of 29% parameters, and obtains a $3.5\times$ compression ratio in three SUPERB tasks, e.g., automatic speaker verification, keyword spotting, and intent classification, with a slight accuracy loss. The code and pre-trained models are available at https://github.com/mechanicalsea/lighthubert.