Abstract:This paper introduces a software architecture for real-time object detection using machine learning (ML) in an augmented reality (AR) environment. Our approach uses the recent state-of-the-art YOLOv8 network that runs onboard on the Microsoft HoloLens 2 head-mounted display (HMD). The primary motivation behind this research is to enable the application of advanced ML models for enhanced perception and situational awareness with a wearable, hands-free AR platform. We show the image processing pipeline for the YOLOv8 model and the techniques used to make it real-time on the resource-limited edge computing platform of the headset. The experimental results demonstrate that our solution achieves real-time processing without needing offloading tasks to the cloud or any other external servers while retaining satisfactory accuracy regarding the usual mAP metric and measured qualitative performance
Abstract:Reproducibility is one of the core dimensions that concur to deliver Trustworthy Artificial Intelligence. Broadly speaking, reproducibility can be defined as the possibility to reproduce the same or a similar experiment or method, thereby obtaining the same or similar results as the original scientists. It is an essential ingredient of the scientific method and crucial for gaining trust in relevant claims. A reproducibility crisis has been recently acknowledged by scientists and this seems to affect even more Artificial Intelligence and Machine Learning, due to the complexity of the models at the core of their recent successes. Notwithstanding the recent debate on Artificial Intelligence reproducibility, its practical implementation is still insufficient, also because many technical issues are overlooked. In this survey, we critically review the current literature on the topic and highlight the open issues. Our contribution is three-fold. We propose a concise terminological review of the terms coming into play. We collect and systematize existing recommendations for achieving reproducibility, putting forth the means to comply with them. We identify key elements often overlooked in modern Machine Learning and provide novel recommendations for them. We further specialize these for two critical application domains, namely the biomedical and physical artificial intelligence fields.
Abstract:Motion planning is a mature area of research in robotics with many well-established methods based on optimization or sampling the state space, suitable for solving kinematic motion planning. However, when dynamic motions under constraints are needed and computation time is limited, fast kinodynamic planning on the constraint manifold is indispensable. In recent years, learning-based solutions have become alternatives to classical approaches, but they still lack comprehensive handling of complex constraints, such as planning on a lower-dimensional manifold of the task space while considering the robot's dynamics. This paper introduces a novel learning-to-plan framework that exploits the concept of constraint manifold, including dynamics, and neural planning methods. Our approach generates plans satisfying an arbitrary set of constraints and computes them in a short constant time, namely the inference time of a neural network. This allows the robot to plan and replan reactively, making our approach suitable for dynamic environments. We validate our approach on two simulated tasks and in a demanding real-world scenario, where we use a Kuka LBR Iiwa 14 robotic arm to perform the hitting movement in robotic Air Hockey.
Abstract:Although haptic sensing has recently been used for legged robot localization in extreme environments where a camera or LiDAR might fail, the problem of efficiently representing the haptic signatures in a learned prior map is still open. This paper introduces an approach to terrain representation for haptic localization inspired by recent trends in machine learning. It combines this approach with the proven Monte Carlo algorithm to obtain an accurate, computation-efficient, and practical method for localizing legged robots under adversarial environmental conditions. We apply the triplet loss concept to learn highly descriptive embeddings in a transformer-based neural network. As the training haptic data are not labeled, the positive and negative examples are discriminated by their geometric locations discovered while training. We demonstrate experimentally that the proposed approach outperforms by a large margin the previous solutions to haptic localization of legged robots concerning the accuracy, inference time, and the amount of data stored in the map. As far as we know, this is the first approach that completely removes the need to use a dense terrain map for accurate haptic localization, thus paving the way to practical applications.
Abstract:This paper demonstrates how an efficient representation of the planned path using B-splines, and a construction procedure that takes advantage of the neural network's inductive bias, speed up both the inference and training of a DNN-based motion planner. We build upon our recent work on learning local car maneuvers from past experience using a DNN architecture, introducing a novel B-spline path construction method, making it possible to generate local maneuvers in almost constant time of about 11 ms, respecting a number of constraints imposed by the environment map and the kinematics of a car-like vehicle. We evaluate thoroughly the new planner employing the recent Bench-MR framework to obtain quantitative results showing that our method outperforms state-of-the-art planners by a large margin in the considered task.
Abstract:We propose an extension to the segment-based global localization method for LiDAR SLAM using descriptors learned considering the visual context of the segments. A new architecture of the deep neural network is presented that learns the visual context acquired from synthetic LiDAR intensity images. This approach allows a single multi-beam LiDAR to produce rich and highly descriptive location signatures. The method is tested on two public datasets, demonstrating an improved descriptiveness of the new descriptors, and more reliable loop closure detection in SLAM. Attention analysis of the network is used to show the importance of focusing on the broader context rather than only on the 3-D segment.
Abstract:We propose a computationally efficient $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup $G \leq S_n$ of the symmetric group on input data. The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data. Theoretical considerations are supported by numerical experiments, which demonstrate the effectiveness and strong generalization properties of the proposed method in comparison to other $G$-invariant neural networks.
Abstract:Being able to rapidly respond to the changing scenes and traffic situations by generating feasible local paths is of pivotal importance for car autonomy. We propose to train a deep neural network (DNN) to plan feasible and nearly-optimal paths for kinematically constrained vehicles in small constant time. Our DNN model is trained using a novel weakly supervised approach and a gradient-based policy search. On real and simulated scenes and a large set of local planning problems, we demonstrate that our approach outperforms the existing planners with respect to the number of successfully completed tasks. While the path generation time is about 40 ms, the generated paths are smooth and comparable to those obtained from conventional path planners.
Abstract:An efficient path planner for autonomous car-like vehicles should handle the strong kinematic constraints, particularly in confined spaces commonly encountered while maneuvering in city traffic, and should enable rapid planning, as the city traffic scenarios are highly dynamic. State-of-the-art planning algorithms handle such difficult cases at high computational cost, often yielding non-deterministic results. However, feasible local paths can be quickly generated leveraging the past planning experience gained in the same or similar environment. While learning through supervised training is problematic for real traffic scenarios, we introduce in this paper a novel neural network-based method for path planning, which employs a gradient-based self-supervised learning algorithm to predict feasible paths. This approach strongly exploits the experience gained in the past and rapidly yields feasible maneuver plans for car-like vehicles with limited steering-angle. The effectiveness of such an approach has been confirmed by computational experiments.
Abstract:We introduce a method to design a computationally efficient $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup $G \leq S_n$ of the symmetric group on input data. The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data. This latent representation is then processed with a multi-layer perceptron in the network. We prove the universality of the proposed architecture, discuss its properties and highlight its computational and memory efficiency. Theoretical considerations are supported by numerical experiments involving different network configurations, which demonstrate the effectiveness and strong generalization properties of the proposed method in comparison to other $G$-invariant neural networks.