Abstract:Society is increasingly relying on predictive models in fields like criminal justice, credit risk management, or hiring. To prevent such automated systems from discriminating against people belonging to certain groups, fairness measures have become a crucial component in socially relevant applications of machine learning. However, existing fairness measures have been designed to assess the bias between predictions for protected groups without considering the imbalance in the classes of the target variable. Current research on the potential effect of class imbalance on fairness focuses on practical applications rather than dataset-independent measure properties. In this paper, we study the general properties of fairness measures for changing class and protected group proportions. For this purpose, we analyze the probability mass functions of six of the most popular group fairness measures. We also measure how the probability of achieving perfect fairness changes for varying class imbalance ratios. Moreover, we relate the dataset-independent properties of fairness measures described in this paper to classifier fairness in real-life tasks. Our results show that measures such as Equal Opportunity and Positive Predictive Parity are more sensitive to changes in class imbalance than Accuracy Equality. These findings can help guide researchers and practitioners in choosing the most appropriate fairness measures for their classification problems.
Abstract:Learning classifiers from imbalanced and concept drifting data streams is still a challenge. Most of the current proposals focus on taking into account changes in the global imbalance ratio only and ignore the local difficulty factors, such as the minority class decomposition into sub-concepts and the presence of unsafe types of examples (borderline or rare ones). As the above factors present in the stream may deteriorate the performance of popular online classifiers, we propose extensions of resampling online bagging, namely Neighbourhood Undersampling or Oversampling Online Bagging to take better account of the presence of unsafe minority examples. The performed computational experiments with synthetic complex imbalanced data streams have shown their advantage over earlier variants of online bagging resampling ensembles.
Abstract:Counterfactual explanations (CFEs) guide users on how to adjust inputs to machine learning models to achieve desired outputs. While existing research primarily addresses static scenarios, real-world applications often involve data or model changes, potentially invalidating previously generated CFEs and rendering user-induced input changes ineffective. Current methods addressing this issue often support only specific models or change types, require extensive hyperparameter tuning, or fail to provide probabilistic guarantees on CFE robustness to model changes. This paper proposes a novel approach for generating CFEs that provides probabilistic guarantees for any model and change type, while offering interpretable and easy-to-select hyperparameters. We establish a theoretical framework for probabilistically defining robustness to model change and demonstrate how our BetaRCE method directly stems from it. BetaRCE is a post-hoc method applied alongside a chosen base CFE generation method to enhance the quality of the explanation beyond robustness. It facilitates a transition from the base explanation to a more robust one with user-adjusted probability bounds. Through experimental comparisons with baselines, we show that BetaRCE yields robust, most plausible, and closest to baseline counterfactual explanations.
Abstract:The need for interpreting machine learning models is addressed through prototype explanations within the context of tree ensembles. An algorithm named Adaptive Prototype Explanations of Tree Ensembles (A-PETE) is proposed to automatise the selection of prototypes for these classifiers. Its unique characteristics is using a specialised distance measure and a modified k-medoid approach. Experiments demonstrated its competitive predictive accuracy with respect to earlier explanation algorithms. It also provides a a sufficient number of prototypes for the purpose of interpreting the random forest classifier.
Abstract:We present PPCEF, a novel method for generating probabilistically plausible counterfactual explanations (CFs). PPCEF advances beyond existing methods by combining a probabilistic formulation that leverages the data distribution with the optimization of plausibility within a unified framework. Compared to reference approaches, our method enforces plausibility by directly optimizing the explicit density function without assuming a particular family of parametrized distributions. This ensures CFs are not only valid (i.e., achieve class change) but also align with the underlying data's probability density. For that purpose, our approach leverages normalizing flows as powerful density estimators to capture the complex high-dimensional data distribution. Furthermore, we introduce a novel loss that balances the trade-off between achieving class change and maintaining closeness to the original instance while also incorporating a probabilistic plausibility term. PPCEF's unconstrained formulation allows for efficient gradient-based optimization with batch processing, leading to orders of magnitude faster computation compared to prior methods. Moreover, the unconstrained formulation of PPCEF allows for the seamless integration of future constraints tailored to specific counterfactual properties. Finally, extensive evaluations demonstrate PPCEF's superiority in generating high-quality, probabilistically plausible counterfactual explanations in high-dimensional tabular settings. This makes PPCEF a powerful tool for not only interpreting complex machine learning models but also for improving fairness, accountability, and trust in AI systems.
Abstract:Growing regulatory and societal pressures demand increased transparency in AI, particularly in understanding the decisions made by complex machine learning models. Counterfactual Explanations (CFs) have emerged as a promising technique within Explainable AI (xAI), offering insights into individual model predictions. However, to understand the systemic biases and disparate impacts of AI models, it is crucial to move beyond local CFs and embrace global explanations, which offer a~holistic view across diverse scenarios and populations. Unfortunately, generating Global Counterfactual Explanations (GCEs) faces challenges in computational complexity, defining the scope of "global," and ensuring the explanations are both globally representative and locally plausible. We introduce a novel unified approach for generating Local, Group-wise, and Global Counterfactual Explanations for differentiable classification models via gradient-based optimization to address these challenges. This framework aims to bridge the gap between individual and systemic insights, enabling a deeper understanding of model decisions and their potential impact on diverse populations. Our approach further innovates by incorporating a probabilistic plausibility criterion, enhancing actionability and trustworthiness. By offering a cohesive solution to the optimization and plausibility challenges in GCEs, our work significantly advances the interpretability and accountability of AI models, marking a step forward in the pursuit of transparent AI.
Abstract:Counterfactuals are widely used to explain ML model predictions by providing alternative scenarios for obtaining the more desired predictions. They can be generated by a variety of methods that optimize different, sometimes conflicting, quality measures and produce quite different solutions. However, choosing the most appropriate explanation method and one of the generated counterfactuals is not an easy task. Instead of forcing the user to test many different explanation methods and analysing conflicting solutions, in this paper, we propose to use a multi-stage ensemble approach that will select single counterfactual based on the multiple-criteria analysis. It offers a compromise solution that scores well on several popular quality measures. This approach exploits the dominance relation and the ideal point decision aid method, which selects one counterfactual from the Pareto front. The conducted experiments demonstrated that the proposed approach generates fully actionable counterfactuals with attractive compromise values of the considered quality measures.
Abstract:Providing natural language explanations for recommendations is particularly useful from the perspective of a non-expert user. Although several methods for providing such explanations have recently been proposed, we argue that an important aspect of explanation quality has been overlooked in their experimental evaluation. Specifically, the coherence between generated text and predicted rating, which is a necessary condition for an explanation to be useful, is not properly captured by currently used evaluation measures. In this paper, we highlight the issue of explanation and prediction coherence by 1) presenting results from a manual verification of explanations generated by one of the state-of-the-art approaches 2) proposing a method of automatic coherence evaluation 3) introducing a new transformer-based method that aims to produce more coherent explanations than the state-of-the-art approaches 4) performing an experimental evaluation which demonstrates that this method significantly improves the explanation coherence without affecting the other aspects of recommendation performance.
Abstract:Improving the classification of multi-class imbalanced data is more difficult than its two-class counterpart. In this paper, we use deep neural networks to train new representations of tabular multi-class data. Unlike the typically developed re-sampling pre-processing methods, our proposal modifies the distribution of features, i.e. the positions of examples in the learned embedded representation, and it does not modify the class sizes. To learn such embedded representations we introduced various definitions of triplet loss functions: the simplest one uses weights related to the degree of class imbalance, while the next proposals are intended for more complex distributions of examples and aim to generate a safe neighborhood of minority examples. Similarly to the resampling approaches, after applying such preprocessing, different classifiers can be trained on new representations. Experiments with popular multi-class imbalanced benchmark data sets and three classifiers showed the advantage of the proposed approach over popular pre-processing methods as well as basic versions of neural networks with classical loss function formulations.
Abstract:Reproducibility is one of the core dimensions that concur to deliver Trustworthy Artificial Intelligence. Broadly speaking, reproducibility can be defined as the possibility to reproduce the same or a similar experiment or method, thereby obtaining the same or similar results as the original scientists. It is an essential ingredient of the scientific method and crucial for gaining trust in relevant claims. A reproducibility crisis has been recently acknowledged by scientists and this seems to affect even more Artificial Intelligence and Machine Learning, due to the complexity of the models at the core of their recent successes. Notwithstanding the recent debate on Artificial Intelligence reproducibility, its practical implementation is still insufficient, also because many technical issues are overlooked. In this survey, we critically review the current literature on the topic and highlight the open issues. Our contribution is three-fold. We propose a concise terminological review of the terms coming into play. We collect and systematize existing recommendations for achieving reproducibility, putting forth the means to comply with them. We identify key elements often overlooked in modern Machine Learning and provide novel recommendations for them. We further specialize these for two critical application domains, namely the biomedical and physical artificial intelligence fields.