Abstract:In computer graphics, there is a need to recover easily modifiable representations of 3D geometry and appearance from image data. We introduce a novel method for this task using 3D Gaussian Splatting, which enables intuitive scene editing through mesh adjustments. Starting with input images and camera poses, we reconstruct the underlying geometry using a neural Signed Distance Field and extract a high-quality mesh. Our model then estimates a set of Gaussians, where each component is flat, and the opacity is conditioned on the recovered neural surface. To facilitate editing, we produce a proxy representation that encodes information about the Gaussians' shape and position. Unlike other methods, our pipeline allows modifications applied to the extracted mesh to be propagated to the proxy representation, from which we recover the updated parameters of the Gaussians. This effectively transfers the mesh edits back to the recovered appearance representation. By leveraging mesh-guided transformations, our approach simplifies 3D scene editing and offers improvements over existing methods in terms of usability and visual fidelity of edits. The complete source code for this project can be accessed at \url{https://github.com/WJakubowska/NeuralSurfacePriors}
Abstract:Low-rank adaptation (LoRA) is a fine-tuning technique that can be applied to conditional generative diffusion models. LoRA utilizes a small number of context examples to adapt the model to a specific domain, character, style, or concept. However, due to the limited data utilized during training, the fine-tuned model performance is often characterized by strong context bias and a low degree of variability in the generated images. To solve this issue, we introduce AutoLoRA, a novel guidance technique for diffusion models fine-tuned with the LoRA approach. Inspired by other guidance techniques, AutoLoRA searches for a trade-off between consistency in the domain represented by LoRA weights and sample diversity from the base conditional diffusion model. Moreover, we show that incorporating classifier-free guidance for both LoRA fine-tuned and base models leads to generating samples with higher diversity and better quality. The experimental results for several fine-tuned LoRA domains show superiority over existing guidance techniques on selected metrics.
Abstract:Growing regulatory and societal pressures demand increased transparency in AI, particularly in understanding the decisions made by complex machine learning models. Counterfactual Explanations (CFs) have emerged as a promising technique within Explainable AI (xAI), offering insights into individual model predictions. However, to understand the systemic biases and disparate impacts of AI models, it is crucial to move beyond local CFs and embrace global explanations, which offer a~holistic view across diverse scenarios and populations. Unfortunately, generating Global Counterfactual Explanations (GCEs) faces challenges in computational complexity, defining the scope of "global," and ensuring the explanations are both globally representative and locally plausible. We introduce a novel unified approach for generating Local, Group-wise, and Global Counterfactual Explanations for differentiable classification models via gradient-based optimization to address these challenges. This framework aims to bridge the gap between individual and systemic insights, enabling a deeper understanding of model decisions and their potential impact on diverse populations. Our approach further innovates by incorporating a probabilistic plausibility criterion, enhancing actionability and trustworthiness. By offering a cohesive solution to the optimization and plausibility challenges in GCEs, our work significantly advances the interpretability and accountability of AI models, marking a step forward in the pursuit of transparent AI.
Abstract:We present PPCEF, a novel method for generating probabilistically plausible counterfactual explanations (CFs). PPCEF advances beyond existing methods by combining a probabilistic formulation that leverages the data distribution with the optimization of plausibility within a unified framework. Compared to reference approaches, our method enforces plausibility by directly optimizing the explicit density function without assuming a particular family of parametrized distributions. This ensures CFs are not only valid (i.e., achieve class change) but also align with the underlying data's probability density. For that purpose, our approach leverages normalizing flows as powerful density estimators to capture the complex high-dimensional data distribution. Furthermore, we introduce a novel loss that balances the trade-off between achieving class change and maintaining closeness to the original instance while also incorporating a probabilistic plausibility term. PPCEF's unconstrained formulation allows for efficient gradient-based optimization with batch processing, leading to orders of magnitude faster computation compared to prior methods. Moreover, the unconstrained formulation of PPCEF allows for the seamless integration of future constraints tailored to specific counterfactual properties. Finally, extensive evaluations demonstrate PPCEF's superiority in generating high-quality, probabilistically plausible counterfactual explanations in high-dimensional tabular settings. This makes PPCEF a powerful tool for not only interpreting complex machine learning models but also for improving fairness, accountability, and trust in AI systems.
Abstract:Designing predictive models for subjective problems in natural language processing (NLP) remains challenging. This is mainly due to its non-deterministic nature and different perceptions of the content by different humans. It may be solved by Personalized Natural Language Processing (PNLP), where the model exploits additional information about the reader to make more accurate predictions. However, current approaches require complete information about the recipients to be straight embedded. Besides, the recent methods focus on deterministic inference or simple frequency-based estimations of the probabilities. In this work, we overcome this limitation by proposing a novel approach to capture the uncertainty of the forecast using conditional Normalizing Flows. This allows us to model complex multimodal distributions and to compare various models using negative log-likelihood (NLL). In addition, the new solution allows for various interpretations of possible reader perception thanks to the available sampling function. We validated our method on three challenging, subjective NLP tasks, including emotion recognition and hate speech. The comparative analysis of generalized and personalized approaches revealed that our personalized solutions significantly outperform the baseline and provide more precise uncertainty estimates. The impact on the text interpretability and uncertainty studies are presented as well. The information brought by the developed methods makes it possible to build hybrid models whose effectiveness surpasses classic solutions. In addition, an analysis and visualization of the probabilities of the given decisions for texts with high entropy of annotations and annotators with mixed views were carried out.
Abstract:Enhancing low-light images while maintaining natural colors is a challenging problem due to camera processing variations and limited access to photos with ground-truth lighting conditions. The latter is a crucial factor for supervised methods that achieve good results on paired datasets but do not handle out-of-domain data well. On the other hand, unsupervised methods, while able to generalize, often yield lower-quality enhancements. To fill this gap, we propose Dimma, a semi-supervised approach that aligns with any camera by utilizing a small set of image pairs to replicate scenes captured under extreme lighting conditions taken by that specific camera. We achieve that by introducing a convolutional mixture density network that generates distorted colors of the scene based on the illumination differences. Additionally, our approach enables accurate grading of the dimming factor, which provides a wide range of control and flexibility in adjusting the brightness levels during the low-light image enhancement process. To further improve the quality of our results, we introduce an architecture based on a conditional UNet. The lightness value provided by the user serves as the conditional input to generate images with the desired lightness. Our approach using only few image pairs achieves competitive results compared to fully supervised methods. Moreover, when trained on the full dataset, our model surpasses state-of-the-art methods in some metrics and closely approaches them in others.
Abstract:State-of-the-art models can perform well in controlled environments, but they often struggle when presented with out-of-distribution (OOD) examples, making OOD detection a critical component of NLP systems. In this paper, we focus on highlighting the limitations of existing approaches to OOD detection in NLP. Specifically, we evaluated eight OOD detection methods that are easily integrable into existing NLP systems and require no additional OOD data or model modifications. One of our contributions is providing a well-structured research environment that allows for full reproducibility of the results. Additionally, our analysis shows that existing OOD detection methods for NLP tasks are not yet sufficiently sensitive to capture all samples characterized by various types of distributional shifts. Particularly challenging testing scenarios arise in cases of background shift and randomly shuffled word order within in domain texts. This highlights the need for future work to develop more effective OOD detection approaches for the NLP problems, and our work provides a well-defined foundation for further research in this area.
Abstract:Self-supervised methods have been proven effective for learning deep representations of 3D point cloud data. Although recent methods in this domain often rely on random masking of inputs, the results of this approach can be improved. We introduce PointCAM, a novel adversarial method for learning a masking function for point clouds. Our model utilizes a self-distillation framework with an online tokenizer for 3D point clouds. Compared to previous techniques that optimize patch-level and object-level objectives, we postulate applying an auxiliary network that learns how to select masks instead of choosing them randomly. Our results show that the learned masking function achieves state-of-the-art or competitive performance on various downstream tasks. The source code is available at https://github.com/szacho/pointcam.
Abstract:NeRF is a popular model that efficiently represents 3D objects from 2D images. However, vanilla NeRF has a few important limitations. NeRF must be trained on each object separately. The training time is long since we encode the object's shape and color in neural network weights. Moreover, NeRF does not generalize well to unseen data. In this paper, we present MultiPlaneNeRF -- a first model that simultaneously solves all the above problems. Our model works directly on 2D images. We project 3D points on 2D images to produce non-trainable representations. The projection step is not parametrized, and a very shallow decoder can efficiently process the representation. Using existing images as part of NeRF can significantly reduce the number of parameters since we train only a small implicit decoder. Furthermore, we can train MultiPlaneNeRF on a large data set and force our implicit decoder to generalize across many objects. Consequently, we can only replace the 2D images (without additional training) to produce a NeRF representation of the new object. In the experimental section, we demonstrate that MultiPlaneNeRF achieves comparable results to state-of-the-art models for synthesizing new views and has generalization properties.
Abstract:Traditional 3D face models are based on mesh representations with texture. One of the most important models is FLAME (Faces Learned with an Articulated Model and Expressions), which produces meshes of human faces that are fully controllable. Unfortunately, such models have problems with capturing geometric and appearance details. In contrast to mesh representation, the neural radiance field (NeRF) produces extremely sharp renders. But implicit methods are hard to animate and do not generalize well to unseen expressions. It is not trivial to effectively control NeRF models to obtain face manipulation. The present paper proposes a novel approach, named NeRFlame, which combines the strengths of both NeRF and FLAME methods. Our method enables high-quality rendering capabilities of NeRF while also offering complete control over the visual appearance, similar to FLAME. Unlike conventional NeRF-based architectures that utilize neural networks to model RGB colors and volume density, NeRFlame employs FLAME mesh as an explicit density volume. As a result, color values are non-zero only in the proximity of the FLAME mesh. This FLAME backbone is then integrated into the NeRF architecture to predict RGB colors, allowing NeRFlame to explicitly model volume density and implicitly model RGB colors.