Abstract:In computer graphics, there is a need to recover easily modifiable representations of 3D geometry and appearance from image data. We introduce a novel method for this task using 3D Gaussian Splatting, which enables intuitive scene editing through mesh adjustments. Starting with input images and camera poses, we reconstruct the underlying geometry using a neural Signed Distance Field and extract a high-quality mesh. Our model then estimates a set of Gaussians, where each component is flat, and the opacity is conditioned on the recovered neural surface. To facilitate editing, we produce a proxy representation that encodes information about the Gaussians' shape and position. Unlike other methods, our pipeline allows modifications applied to the extracted mesh to be propagated to the proxy representation, from which we recover the updated parameters of the Gaussians. This effectively transfers the mesh edits back to the recovered appearance representation. By leveraging mesh-guided transformations, our approach simplifies 3D scene editing and offers improvements over existing methods in terms of usability and visual fidelity of edits. The complete source code for this project can be accessed at \url{https://github.com/WJakubowska/NeuralSurfacePriors}
Abstract:Recently proposed methods for implicitly representing signals such as images, scenes, or geometries using coordinate-based neural network architectures often do not leverage the choice of activation functions, or do so only to a limited extent. In this paper, we introduce the Hyperbolic Oscillation function (HOSC), a novel activation function with a controllable sharpness parameter. Unlike any previous activations, HOSC has been specifically designed to better capture sudden changes in the input signal, and hence sharp or acute features of the underlying data, as well as smooth low-frequency transitions. Due to its simplicity and modularity, HOSC offers a plug-and-play functionality that can be easily incorporated into any existing method employing a neural network as a way of implicitly representing a signal. We benchmark HOSC against other popular activations in an array of general tasks, empirically showing an improvement in the quality of obtained representations, provide the mathematical motivation behind the efficacy of HOSC, and discuss its limitations.