Abstract:Single-step retrosynthesis aims to predict a set of reactions that lead to the creation of a target molecule, which is a crucial task in molecular discovery. Although a target molecule can often be synthesized with multiple different reactions, it is not clear how to verify the feasibility of a reaction, because the available datasets cover only a tiny fraction of the possible solutions. Consequently, the existing models are not encouraged to explore the space of possible reactions sufficiently. In this paper, we propose a novel single-step retrosynthesis model, RetroGFN, that can explore outside the limited dataset and return a diverse set of feasible reactions by leveraging a feasibility proxy model during the training. We show that RetroGFN achieves competitive results on standard top-k accuracy while outperforming existing methods on round-trip accuracy. Moreover, we provide empirical arguments in favor of using round-trip accuracy which expands the notion of feasibility with respect to the standard top-k accuracy metric.
Abstract:Collaborative self-supervised learning has recently become feasible in highly distributed environments by dividing the network layers between client devices and a central server. However, state-of-the-art methods, such as MocoSFL, are optimized for network division at the initial layers, which decreases the protection of the client data and increases communication overhead. In this paper, we demonstrate that splitting depth is crucial for maintaining privacy and communication efficiency in distributed training. We also show that MocoSFL suffers from a catastrophic quality deterioration for the minimal communication overhead. As a remedy, we introduce Momentum-Aligned contrastive Split Federated Learning (MonAcoSFL), which aligns online and momentum client models during training procedure. Consequently, we achieve state-of-the-art accuracy while significantly reducing the communication overhead, making MonAcoSFL more practical in real-world scenarios.
Abstract:Conditional GANs are frequently used for manipulating the attributes of face images, such as expression, hairstyle, pose, or age. Even though the state-of-the-art models successfully modify the requested attributes, they simultaneously modify other important characteristics of the image, such as a person's identity. In this paper, we focus on solving this problem by introducing PluGeN4Faces, a plugin to StyleGAN, which explicitly disentangles face attributes from a person's identity. Our key idea is to perform training on images retrieved from movie frames, where a given person appears in various poses and with different attributes. By applying a type of contrastive loss, we encourage the model to group images of the same person in similar regions of latent space. Our experiments demonstrate that the modifications of face attributes performed by PluGeN4Faces are significantly less invasive on the remaining characteristics of the image than in the existing state-of-the-art models.
Abstract:Graph Neural Networks (GNNs) play a fundamental role in many deep learning problems, in particular in cheminformatics. However, typical GNNs cannot capture the concept of chirality, which means they do not distinguish between the 3D graph of a chemical compound and its mirror image (enantiomer). The ability to distinguish between enantiomers is important especially in drug discovery because enantiomers can have very distinct biochemical properties. In this paper, we propose a theoretically justified message-passing scheme, which makes GNNs sensitive to the order of node neighbors. We apply that general concept in the context of molecular chirality to construct Chiral Edge Neural Network (ChiENN) layer which can be appended to any GNN model to enable chirality-awareness. Our experiments show that adding ChiENN layers to a GNN outperforms current state-of-the-art methods in chiral-sensitive molecular property prediction tasks.
Abstract:Self-supervised learning (SSL) is a powerful technique for learning robust representations from unlabeled data. By learning to remain invariant to applied data augmentations, methods such as SimCLR and MoCo are able to reach quality on par with supervised approaches. However, this invariance may be harmful to solving some downstream tasks which depend on traits affected by augmentations used during pretraining, such as color. In this paper, we propose to foster sensitivity to such characteristics in the representation space by modifying the projector network, a common component of self-supervised architectures. Specifically, we supplement the projector with information about augmentations applied to images. In order for the projector to take advantage of this auxiliary guidance when solving the SSL task, the feature extractor learns to preserve the augmentation information in its representations. Our approach, coined Conditional Augmentation-aware Selfsupervised Learning (CASSLE), is directly applicable to typical joint-embedding SSL methods regardless of their objective functions. Moreover, it does not require major changes in the network architecture or prior knowledge of downstream tasks. In addition to an analysis of sensitivity towards different data augmentations, we conduct a series of experiments, which show that CASSLE improves over various SSL methods, reaching state-of-the-art performance in multiple downstream tasks.
Abstract:Nowadays artificial neural network models achieve remarkable results in many disciplines. Functions mapping the representation provided by the model to the probability distribution are the inseparable aspect of deep learning solutions. Although softmax is a commonly accepted probability mapping function in the machine learning community, it cannot return sparse outputs and always spreads the positive probability to all positions. In this paper, we propose r-softmax, a modification of the softmax, outputting sparse probability distribution with controllable sparsity rate. In contrast to the existing sparse probability mapping functions, we provide an intuitive mechanism for controlling the output sparsity level. We show on several multi-label datasets that r-softmax outperforms other sparse alternatives to softmax and is highly competitive with the original softmax. We also apply r-softmax to the self-attention module of a pre-trained transformer language model and demonstrate that it leads to improved performance when fine-tuning the model on different natural language processing tasks.
Abstract:Deep learning has achieved impressive performance in many domains, such as computer vision and natural language processing, but its advantage over classical shallow methods on tabular datasets remains questionable. It is especially challenging to surpass the performance of tree-like ensembles, such as XGBoost or Random Forests, on small-sized datasets (less than 1k samples). To tackle this challenge, we introduce HyperTab, a hypernetwork-based approach to solving small sample problems on tabular datasets. By combining the advantages of Random Forests and neural networks, HyperTab generates an ensemble of neural networks, where each target model is specialized to process a specific lower-dimensional view of the data. Since each view plays the role of data augmentation, we virtually increase the number of training samples while keeping the number of trainable parameters unchanged, which prevents model overfitting. We evaluated HyperTab on more than 40 tabular datasets of a varying number of samples and domains of origin, and compared its performance with shallow and deep learning models representing the current state-of-the-art. We show that HyperTab consistently outranks other methods on small data (with a statistically significant difference) and scores comparable to them on larger datasets. We make a python package with the code available to download at https://pypi.org/project/hypertab/
Abstract:Deep clustering has been dominated by flat models, which split a dataset into a predefined number of groups. Although recent methods achieve an extremely high similarity with the ground truth on popular benchmarks, the information contained in the flat partition is limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clustering model based on deep neural networks, which can be applied to typical image data. By employing a self-supervised learning approach, CoHiClust distills the base network into a binary tree without access to any labeled data. The hierarchical clustering structure can be used to analyze the relationship between clusters, as well as to measure the similarity between data points. Experiments demonstrate that CoHiClust generates a reasonable structure of clusters, which is consistent with our intuition and image semantics. Moreover, it obtains superior clustering accuracy on most of the image datasets compared to the state-of-the-art flat clustering models.
Abstract:Deep neural networks present impressive performance, yet they cannot reliably estimate their predictive confidence, limiting their applicability in high-risk domains. We show that applying a multi-label one-vs-all loss reveals classification ambiguity and reduces model overconfidence. The introduced SLOVA (Single Label One-Vs-All) model redefines typical one-vs-all predictive probabilities to a single label situation, where only one class is the correct answer. The proposed classifier is confident only if a single class has a high probability and other probabilities are negligible. Unlike the typical softmax function, SLOVA naturally detects out-of-distribution samples if the probabilities of all other classes are small. The model is additionally fine-tuned with exponential calibration, which allows us to precisely align the confidence score with model accuracy. We verify our approach on three tasks. First, we demonstrate that SLOVA is competitive with the state-of-the-art on in-distribution calibration. Second, the performance of SLOVA is robust under dataset shifts. Finally, our approach performs extremely well in the detection of out-of-distribution samples. Consequently, SLOVA is a tool that can be used in various applications where uncertainty modeling is required.
Abstract:Processing of missing data by modern neural networks, such as CNNs, remains a fundamental, yet unsolved challenge, which naturally arises in many practical applications, like image inpainting or autonomous vehicles and robots. While imputation-based techniques are still one of the most popular solutions, they frequently introduce unreliable information to the data and do not take into account the uncertainty of estimation, which may be destructive for a machine learning model. In this paper, we present MisConv, a general mechanism, for adapting various CNN architectures to process incomplete images. By modeling the distribution of missing values by the Mixture of Factor Analyzers, we cover the spectrum of possible replacements and find an analytical formula for the expected value of convolution operator applied to the incomplete image. The whole framework is realized by matrix operations, which makes MisConv extremely efficient in practice. Experiments performed on various image processing tasks demonstrate that MisConv achieves superior or comparable performance to the state-of-the-art methods.