Abstract:Face Recognition (FR) has advanced significantly with the development of deep learning, achieving high accuracy in several applications. However, the lack of interpretability of these systems raises concerns about their accountability, fairness, and reliability. In the present study, we propose an interactive framework to enhance the explainability of FR models by combining model-agnostic Explainable Artificial Intelligence (XAI) and Natural Language Processing (NLP) techniques. The proposed framework is able to accurately answer various questions of the user through an interactive chatbot. In particular, the explanations generated by our proposed method are in the form of natural language text and visual representations, which for example can describe how different facial regions contribute to the similarity measure between two faces. This is achieved through the automatic analysis of the output's saliency heatmaps of the face images and a BERT question-answering model, providing users with an interface that facilitates a comprehensive understanding of the FR decisions. The proposed approach is interactive, allowing the users to ask questions to get more precise information based on the user's background knowledge. More importantly, in contrast to previous studies, our solution does not decrease the face recognition performance. We demonstrate the effectiveness of the method through different experiments, highlighting its potential to make FR systems more interpretable and user-friendly, especially in sensitive applications where decision-making transparency is crucial.
Abstract:Explainable Face Recognition is gaining growing attention as the use of the technology is gaining ground in security-critical applications. Understanding why two faces images are matched or not matched by a given face recognition system is important to operators, users, anddevelopers to increase trust, accountability, develop better systems, and highlight unfair behavior. In this work, we propose xSSAB, an approach to back-propagate similarity score-based arguments that support or oppose the face matching decision to visualize spatial maps that indicate similar and dissimilar areas as interpreted by the underlying FR model. Furthermore, we present Patch-LFW, a new explainable face verification benchmark that enables along with a novel evaluation protocol, the first quantitative evaluation of the validity of similarity and dissimilarity maps in explainable face recognition approaches. We compare our efficient approach to state-of-the-art approaches demonstrating a superior trade-off between efficiency and performance. The code as well as the proposed Patch-LFW is publicly available at: https://github.com/marcohuber/xSSAB.
Abstract:In the context of biometrics, matching confidence refers to the confidence that a given matching decision is correct. Since many biometric systems operate in critical decision-making processes, such as in forensics investigations, accurately and reliably stating the matching confidence becomes of high importance. Previous works on biometric confidence estimation can well differentiate between high and low confidence, but lack interpretability. Therefore, they do not provide accurate probabilistic estimates of the correctness of a decision. In this work, we propose a probabilistic interpretable comparison (PIC) score that accurately reflects the probability that the score originates from samples of the same identity. We prove that the proposed approach provides optimal matching confidence. Contrary to other approaches, it can also optimally combine multiple samples in a joint PIC score which further increases the recognition and confidence estimation performance. In the experiments, the proposed PIC approach is compared against all biometric confidence estimation methods available on four publicly available databases and five state-of-the-art face recognition systems. The results demonstrate that PIC has a significantly more accurate probabilistic interpretation than similar approaches and is highly effective for multi-biometric recognition. The code is publicly-available.
Abstract:Face Recognition (FR) is increasingly used in critical verification decisions and thus, there is a need for assessing the trustworthiness of such decisions. The confidence of a decision is often based on the overall performance of the model or on the image quality. We propose to propagate model uncertainties to scores and decisions in an effort to increase the transparency of verification decisions. This work presents two contributions. First, we propose an approach to estimate the uncertainty of face comparison scores. Second, we introduce a confidence measure of the system's decision to provide insights into the verification decision. The suitability of the comparison scores uncertainties and the verification decision confidences have been experimentally proven on three face recognition models on two datasets.
Abstract:In recent years, image and video manipulations with DeepFake have become a severe concern for security and society. Therefore, many detection models and databases have been proposed to detect DeepFake data reliably. However, there is an increased concern that these models and training databases might be biased and thus, cause DeepFake detectors to fail. In this work, we tackle these issues by (a) providing large-scale demographic and non-demographic attribute annotations of 41 different attributes for five popular DeepFake datasets and (b) comprehensively analysing AI-bias of multiple state-of-the-art DeepFake detection models on these databases. The investigation analyses the influence of a large variety of distinctive attributes (from over 65M labels) on the detection performance, including demographic (age, gender, ethnicity) and non-demographic (hair, skin, accessories, etc.) information. The results indicate that investigated databases lack diversity and, more importantly, show that the utilised DeepFake detection models are strongly biased towards many investigated attributes. Moreover, the results show that the models' decision-making might be based on several questionable (biased) assumptions, such if a person is smiling or wearing a hat. Depending on the application of such DeepFake detection methods, these biases can lead to generalizability, fairness, and security issues. We hope that the findings of this study and the annotation databases will help to evaluate and mitigate bias in future DeepFake detection techniques. Our annotation datasets are made publicly available.
Abstract:A MasterFace is a face image that can successfully match against a large portion of the population. Since their generation does not require access to the information of the enrolled subjects, MasterFace attacks represent a potential security risk for widely-used face recognition systems. Previous works proposed methods for generating such images and demonstrated that these attacks can strongly compromise face recognition. However, previous works followed evaluation settings consisting of older recognition models, limited cross-dataset and cross-model evaluations, and the use of low-scale testing data. This makes it hard to state the generalizability of these attacks. In this work, we comprehensively analyse the generalizability of MasterFace attacks in empirical and theoretical investigations. The empirical investigations include the use of six state-of-the-art FR models, cross-dataset and cross-model evaluation protocols, and utilizing testing datasets of significantly higher size and variance. The results indicate a low generalizability when MasterFaces are training on a different face recognition model than the one used for testing. In these cases, the attack performance is similar to zero-effort imposter attacks. In the theoretical investigations, we define and estimate the face capacity and the maximum MasterFace coverage under the assumption that identities in the face space are well separated. The current trend of increasing the fairness and generalizability in face recognition indicates that the vulnerability of future systems might further decrease. Future works might analyse the utility of MasterFaces for understanding and enhancing the robustness of face recognition models.
Abstract:Face recognition systems have to deal with large variabilities (such as different poses, illuminations, and expressions) that might lead to incorrect matching decisions. These variabilities can be measured in terms of face image quality which is defined over the utility of a sample for recognition. Previous works on face recognition either do not employ this valuable information or make use of non-inherently fit quality estimates. In this work, we propose a simple and effective face recognition solution (QMag-Face) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes model-specific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced quality-awareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as cross-pose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.95% on XQLFQ, and 98.74% on CFP-FP. The code for QMagFace is publicly available
Abstract:In the recent past, different researchers have proposed novel privacy-enhancing face recognition systems designed to conceal soft-biometric information at feature level. These works have reported impressive results, but usually do not consider specific attacks in their analysis of privacy protection. In most cases, the privacy protection capabilities of these schemes are tested through simple machine learning-based classifiers and visualisations of dimensionality reduction tools. In this work, we introduce an attack on feature level-based facial soft-biometric privacy-enhancement techniques. The attack is based on two observations: (1) to achieve high recognition accuracy, certain similarities between facial representations have to be retained in their privacy-enhanced versions; (2) highly similar facial representations usually originate from face images with similar soft-biometric attributes. Based on these observations, the proposed attack compares a privacy-enhanced face representation against a set of privacy-enhanced face representations with known soft-biometric attributes. Subsequently, the best obtained similarity scores are analysed to infer the unknown soft-biometric attributes of the attacked privacy-enhanced face representation. That is, the attack only requires a relatively small database of arbitrary face images and the privacy-enhancing face recognition algorithm as a black-box. In the experiments, the attack is applied to two representative approaches which have previously been reported to reliably conceal the gender in privacy-enhanced face representations. It is shown that the presented attack is able to circumvent the privacy enhancement to a considerable degree and is able to correctly classify gender with an accuracy of up to approximately 90% for both of the analysed privacy-enhancing face recognition systems.
Abstract:An essential factor to achieve high performance in face recognition systems is the quality of its samples. Since these systems are involved in various daily life there is a strong need of making face recognition processes understandable for humans. In this work, we introduce the concept of pixel-level face image quality that determines the utility of pixels in a face image for recognition. Given an arbitrary face recognition network, in this work, we propose a training-free approach to assess the pixel-level qualities of a face image. To achieve this, a model-specific quality value of the input image is estimated and used to build a sample-specific quality regression model. Based on this model, quality-based gradients are back-propagated and converted into pixel-level quality estimates. In the experiments, we qualitatively and quantitatively investigated the meaningfulness of the pixel-level qualities based on real and artificial disturbances and by comparing the explanation maps on ICAO-incompliant faces. In all scenarios, the results demonstrate that the proposed solution produces meaningful pixel-level qualities. The code is publicly available.
Abstract:An essential factor to achieve high accuracies in fingerprint recognition systems is the quality of its samples. Previous works mainly proposed supervised solutions based on image properties that neglects the minutiae extraction process, despite that most fingerprint recognition techniques are based on detected minutiae. Consequently, a fingerprint image might be assigned a high quality even if the utilized minutia extractor produces unreliable information. In this work, we propose a novel concept of assessing minutia and fingerprint quality based on minutia detection confidence (MiDeCon). MiDeCon can be applied to an arbitrary deep learning based minutia extractor and does not require quality labels for learning. We propose using the detection reliability of the extracted minutia as its quality indicator. By combining the highest minutia qualities, MiDeCon also accurately determines the quality of a full fingerprint. Experiments are conducted on the publicly available databases of the FVC 2006 and compared against several baselines, such as NIST's widely-used fingerprint image quality software NFIQ1 and NFIQ2. The results demonstrate a significantly stronger quality assessment performance of the proposed MiDeCon-qualities as related works on both, minutia- and fingerprint-level. The implementation is publicly available.