Abstract:This work explores how human judgement about salient regions of an image can be introduced into deep convolutional neural network (DCNN) training. Traditionally, training of DCNNs is purely data-driven. This often results in learning features of the data that are only coincidentally correlated with class labels. Human saliency can guide network training using our proposed new component of the loss function that ConveYs Brain Oversight to Raise Generalization (CYBORG) and penalizes the model for using non-salient regions. This mechanism produces DCNNs achieving higher accuracy and generalization compared to using the same training data without human salience. Experimental results demonstrate that CYBORG applies across multiple network architectures and problem domains (detection of synthetic faces, iris presentation attacks and anomalies in chest X-rays), while requiring significantly less data than training without human saliency guidance. Visualizations show that CYBORG-trained models' saliency is more consistent across independent training runs than traditionally-trained models, and also in better agreement with humans. To lower the cost of collecting human annotations, we also explore using deep learning to provide automated annotations. CYBORG training of CNNs addresses important issues such as reducing the appetite for large training sets, increasing interpretability, and reducing fragility by generalizing better to new types of data.
Abstract:This paper studies how to synthesize face images of non-existent persons, to create a dataset that allows effective training of face recognition (FR) models. Two important goals are (1) the ability to generate a large number of distinct identities (inter-class separation) with (2) a wide variation in appearance of each identity (intra-class variation). However, existing works 1) are typically limited in how many well-separated identities can be generated and 2) either neglect or use a separate editing model for attribute augmentation. We propose Vec2Face, a holistic model that uses only a sampled vector as input and can flexibly generate and control face images and their attributes. Composed of a feature masked autoencoder and a decoder, Vec2Face is supervised by face image reconstruction and can be conveniently used in inference. Using vectors with low similarity among themselves as inputs, Vec2Face generates well-separated identities. Randomly perturbing an input identity vector within a small range allows Vec2Face to generate faces of the same identity with robust variation in face attributes. It is also possible to generate images with designated attributes by adjusting vector values with a gradient descent method. Vec2Face has efficiently synthesized as many as 300K identities with 15 million total images, whereas 60K is the largest number of identities created in the previous works. FR models trained with the generated HSFace datasets, from 10k to 300k identities, achieve state-of-the-art accuracy, from 92% to 93.52%, on five real-world test sets. For the first time, our model created using a synthetic training set achieves higher accuracy than the model created using a same-scale training set of real face images (on the CALFW test set).
Abstract:Appearance of a face can be greatly altered by growing a beard and mustache. The facial hairstyles in a pair of images can cause marked changes to the impostor distribution and the genuine distribution. Also, different distributions of facial hairstyle across demographics could cause a false impression of relative accuracy across demographics. We first show that, even though larger training sets boost the recognition accuracy on all facial hairstyles, accuracy variations caused by facial hairstyles persist regardless of the size of the training set. Then, we analyze the impact of having different fractions of the training data represent facial hairstyles. We created balanced training sets using a set of identities available in Webface42M that both have clean-shaven and facial hair images. We find that, even when a face recognition model is trained with a balanced clean-shaven / facial hair training set, accuracy variation on the test data does not diminish. Next, data augmentation is employed to further investigate the effect of facial hair distribution in training data by manipulating facial hair pixels with the help of facial landmark points and a facial hair segmentation model. Our results show facial hair causes an accuracy gap between clean-shaven and facial hair images, and this impact can be significantly different between African-Americans and Caucasians.
Abstract:Face Recognition models are commonly trained with web-scraped datasets containing millions of images and evaluated on test sets emphasizing pose, age and mixed attributes. With train and test sets both assembled from web-scraped images, it is critical to ensure disjoint sets of identities between train and test sets. However, existing train and test sets have not considered this. Moreover, as accuracy levels become saturated, such as LFW $>99.8\%$, more challenging test sets are needed. We show that current train and test sets are generally not identity- or even image-disjoint, and that this results in an optimistic bias in the estimated accuracy. In addition, we show that identity-disjoint folds are important in the 10-fold cross-validation estimate of test accuracy. To better support continued advances in face recognition, we introduce two "Goldilocks" test sets, Hadrian and Eclipse. The former emphasizes challenging facial hairstyles and latter emphasizes challenging over- and under-exposure conditions. Images in both datasets are from a large, controlled-acquisition (not web-scraped) dataset, so they are identity- and image-disjoint with all popular training sets. Accuracy for these new test sets generally falls below that observed on LFW, CPLFW, CALFW, CFP-FP and AgeDB-30, showing that these datasets represent important dimensions for improvement of face recognition. The datasets are available at: \url{https://github.com/HaiyuWu/SOTA-Face-Recognition-Train-and-Test}
Abstract:A fundamental tenet of pattern recognition is that overlap between training and testing sets causes an optimistic accuracy estimate. Deep CNNs for face recognition are trained for N-way classification of the identities in the training set. Accuracy is commonly estimated as average 10-fold classification accuracy on image pairs from test sets such as LFW, CALFW, CPLFW, CFP-FP and AgeDB-30. Because train and test sets have been independently assembled, images and identities in any given test set may also be present in any given training set. In particular, our experiments reveal a surprising degree of identity and image overlap between the LFW family of test sets and the MS1MV2 training set. Our experiments also reveal identity label noise in MS1MV2. We compare accuracy achieved with same-size MS1MV2 subsets that are identity-disjoint and not identity-disjoint with LFW, to reveal the size of the optimistic bias. Using more challenging test sets from the LFW family, we find that the size of the optimistic bias is larger for more challenging test sets. Our results highlight the lack of and the need for identity-disjoint train and test methodology in face recognition research.
Abstract:Synthesis of same-identity biometric iris images, both for existing and non-existing identities while preserving the identity across a wide range of pupil sizes, is complex due to intricate iris muscle constriction mechanism, requiring a precise model of iris non-linear texture deformations to be embedded into the synthesis pipeline. This paper presents the first method of fully data-driven, identity-preserving, pupil size-varying s ynthesis of iris images. This approach is capable of synthesizing images of irises with different pupil sizes representing non-existing identities as well as non-linearly deforming the texture of iris images of existing subjects given the segmentation mask of the target iris image. Iris recognition experiments suggest that the proposed deformation model not only preserves the identity when changing the pupil size but offers better similarity between same-identity iris samples with significant differences in pupil size, compared to state-of-the-art linear and non-linear (bio-mechanical-based) iris deformation models. Two immediate applications of the proposed approach are: (a) synthesis of, or enhancement of the existing biometric datasets for iris recognition, mimicking those acquired with iris sensors, and (b) helping forensic human experts in examining iris image pairs with significant differences in pupil dilation. Source codes and weights of the models are made available with the paper.
Abstract:The first layer of a deep CNN backbone applies filters to an image to extract the basic features available to later layers. During training, some filters may go inactive, mean ing all weights in the filter approach zero. An inactive fil ter in the final model represents a missed opportunity to extract a useful feature. This phenomenon is especially prevalent in specialized CNNs such as for face recogni tion (as opposed to, e.g., ImageNet). For example, in one the most widely face recognition model (ArcFace), about half of the convolution filters in the first layer are inactive. We propose a novel approach designed and tested specif ically for face recognition networks, known as "CRAFT: Contextual Re-Activation of Filters for Face Recognition Training". CRAFT identifies inactive filters during training and reinitializes them based on the context of strong filters at that stage in training. We show that CRAFT reduces fraction of inactive filters from 44% to 32% on average and discovers filter patterns not found by standard training. Compared to standard training without reactivation, CRAFT demonstrates enhanced model accuracy on standard face-recognition benchmark datasets including AgeDB-30, CPLFW, LFW, CALFW, and CFP-FP, as well as on more challenging datasets like IJBB and IJBC.
Abstract:Ensuring logical consistency in predictions is a crucial yet overlooked aspect in multi-attribute classification. We explore the potential reasons for this oversight and introduce two pressing challenges to the field: 1) How can we ensure that a model, when trained with data checked for logical consistency, yields predictions that are logically consistent? 2) How can we achieve the same with data that hasn't undergone logical consistency checks? Minimizing manual effort is also essential for enhancing automation. To address these challenges, we introduce two datasets, FH41K and CelebA-logic, and propose LogicNet, an adversarial training framework that learns the logical relationships between attributes. Accuracy of LogicNet surpasses that of the next-best approach by 23.05%, 9.96%, and 1.71% on FH37K, FH41K, and CelebA-logic, respectively. In real-world case analysis, our approach can achieve a reduction of more than 50% in the average number of failed cases compared to other methods.
Abstract:Modern deep CNN face matchers are trained on datasets containing color images. We show that such matchers achieve essentially the same accuracy on the grayscale or the color version of a set of test images. We then consider possible causes for deep CNN face matchers ``not seeing color''. Popular web-scraped face datasets actually have 30 to 60\% of their identities with one or more grayscale images. We analyze whether this grayscale element in the training set impacts the accuracy achieved, and conclude that it does not. Further, we show that even with a 100\% grayscale training set, comparable accuracy is achieved on color or grayscale test images. Then we show that the skin region of an individual's images in a web-scraped training set exhibit significant variation in their mapping to color space. This suggests that color, at least for web-scraped, in-the-wild face datasets, carries limited identity-related information for training state-of-the-art matchers. Finally, we verify that comparable accuracy is achieved from training using single-channel grayscale images, implying that a larger dataset can be used within the same memory limit, with a less computationally intensive early layer.
Abstract:Most studies to date that have examined demographic variations in face recognition accuracy have analyzed 1-to-1 matching accuracy, using images that could be described as "government ID quality". This paper analyzes the accuracy of 1-to-many facial identification across demographic groups, and in the presence of blur and reduced resolution in the probe image as might occur in "surveillance camera quality" images. Cumulative match characteristic curves(CMC) are not appropriate for comparing propensity for rank-one recognition errors across demographics, and so we introduce three metrics for this: (1) d' metric between mated and non-mated score distributions, (2) absolute score difference between thresholds in the high-similarity tail of the non-mated and the low-similarity tail of the mated distribution, and (3) distribution of (mated - non-mated rank one scores) across the set of probe images. We find that demographic variation in 1-to-many accuracy does not entirely follow what has been observed in 1-to-1 matching accuracy. Also, different from 1-to-1 accuracy, demographic comparison of 1-to-many accuracy can be affected by different numbers of identities and images across demographics. Finally, we show that increased blur in the probe image, or reduced resolution of the face in the probe image, can significantly increase the false positive identification rate. And we show that the demographic variation in these high blur or low resolution conditions is much larger for male/ female than for African-American / Caucasian. The point that 1-to-many accuracy can potentially collapse in the context of processing "surveillance camera quality" probe images against a "government ID quality" gallery is an important one.