Abstract:Most studies to date that have examined demographic variations in face recognition accuracy have analyzed 1-to-1 matching accuracy, using images that could be described as "government ID quality". This paper analyzes the accuracy of 1-to-many facial identification across demographic groups, and in the presence of blur and reduced resolution in the probe image as might occur in "surveillance camera quality" images. Cumulative match characteristic curves(CMC) are not appropriate for comparing propensity for rank-one recognition errors across demographics, and so we introduce three metrics for this: (1) d' metric between mated and non-mated score distributions, (2) absolute score difference between thresholds in the high-similarity tail of the non-mated and the low-similarity tail of the mated distribution, and (3) distribution of (mated - non-mated rank one scores) across the set of probe images. We find that demographic variation in 1-to-many accuracy does not entirely follow what has been observed in 1-to-1 matching accuracy. Also, different from 1-to-1 accuracy, demographic comparison of 1-to-many accuracy can be affected by different numbers of identities and images across demographics. Finally, we show that increased blur in the probe image, or reduced resolution of the face in the probe image, can significantly increase the false positive identification rate. And we show that the demographic variation in these high blur or low resolution conditions is much larger for male/ female than for African-American / Caucasian. The point that 1-to-many accuracy can potentially collapse in the context of processing "surveillance camera quality" probe images against a "government ID quality" gallery is an important one.
Abstract:As virtual and physical identity grow increasingly intertwined, the importance of privacy and security in the online sphere becomes paramount. In recent years, multiple news stories have emerged of private companies scraping web content and doing research with or selling the data. Images uploaded online can be scraped without users' consent or knowledge. Users of social media platforms whose images are scraped may be at risk of being identified in other uploaded images or in real-world identification situations. This paper investigates how simple, accessible image manipulation techniques affect the accuracy of facial recognition software in identifying an individual's various face images based on one unique image.
Abstract:In recent years, media reports have called out bias and racism in face recognition technology. We review experimental results exploring several speculated causes for asymmetric cross-demographic performance. We consider accuracy differences as represented by variations in non-mated (impostor) and / or mated (genuine) distributions for 1-to-1 face matching. Possible causes explored include differences in skin tone, face size and shape, imbalance in number of identities and images in the training data, and amount of face visible in the test data ("face pixels"). We find that demographic differences in face pixel information of the test images appear to most directly impact the resultant differences in face recognition accuracy.