Abstract:The rectangular tokens common to vision transformer methods for visual recognition can strongly affect performance of these methods due to incorporation of information outside the objects to be recognized. This paper introduces PaW-ViT, Patch-based Warping Vision Transformer, a preprocessing approach rooted in anatomical knowledge that normalizes ear images to enhance the efficacy of ViT. By accurately aligning token boundaries to detected ear feature boundaries, PaW-ViT obtains greater robustness to shape, size, and pose variation. By aligning feature boundaries to natural ear curvature, it produces more consistent token representations for various morphologies. Experiments confirm the effectiveness of PaW-ViT on various ViT models (ViT-T, ViT-S, ViT-B, ViT-L) and yield reasonable alignment robustness to variation in shape, size, and pose. Our work aims to solve the disconnect between ear biometric morphological variation and transformer architecture positional sensitivity, presenting a possible avenue for authentication schemes.
Abstract:Ear occlusions (arising from the presence of ear accessories such as earrings and earphones) can negatively impact performance in ear-based biometric recognition systems, especially in unconstrained imaging circumstances. In this study, we assess the effectiveness of a diffusion-based ear inpainting technique as a pre-processing aid to mitigate the issues of ear accessory occlusions in transformer-based ear recognition systems. Given an input ear image and an automatically derived accessory mask, the inpainting model reconstructs clean and anatomically plausible ear regions by synthesizing missing pixels while preserving local geometric coherence along key ear structures, including the helix, antihelix, concha, and lobule. We evaluate the effectiveness of this pre-processing aid in transformer-based recognition systems for several vision transformer models and different patch sizes for a range of benchmark datasets. Experiments show that diffusion-based inpainting can be a useful pre-processing aid to alleviate ear accessory occlusions to improve overall recognition performance.
Abstract:Ear recognition has gained attention as a reliable biometric technique due to the distinctive characteristics of human ears. With the increasing availability of large-scale datasets, convolutional neural networks (CNNs) have been widely adopted to learn features directly from raw ear images, outperforming traditional hand-crafted methods. However, the effect of bilateral ear symmetry on the features learned by CNNs has received little attention in recent studies. In this paper, we investigate how bilateral ear symmetry influences the effectiveness of CNN-based ear recognition. To this end, we first develop an ear side classifier to automatically categorize ear images as either left or right. We then explore the impact of incorporating this side information during both training and test. Cross-dataset evaluations are conducted on five datasets. Our results suggest that treating left and right ears separately during training and testing can lead to notable performance improvements. Furthermore, our ablation studies on alignment strategies, input sizes, and various hyperparameter settings provide practical insights into training CNN-based ear recognition systems on large-scale datasets to achieve higher verification rates.
Abstract:Ear recognition has emerged as a promising biometric modality due to the relative stability in appearance during adulthood. Although Vision Transformers (ViTs) have been widely used in image recognition tasks, their efficiency in ear recognition has been hampered by a lack of attention to overlapping patches, which is crucial for capturing intricate ear features. In this study, we evaluate ViT-Tiny (ViT-T), ViT-Small (ViT-S), ViT-Base (ViT-B) and ViT-Large (ViT-L) configurations on a diverse set of datasets (OPIB, AWE, WPUT, and EarVN1.0), using an overlapping patch selection strategy. Results demonstrate the critical importance of overlapping patches, yielding superior performance in 44 of 48 experiments in a structured study. Moreover, upon comparing the results of the overlapping patches with the non-overlapping configurations, the increase is significant, reaching up to 10% for the EarVN1.0 dataset. In terms of model performance, the ViT-T model consistently outperformed the ViT-S, ViT-B, and ViT-L models on the AWE, WPUT, and EarVN1.0 datasets. The highest scores were achieved in a configuration with a patch size of 28x28 and a stride of 14 pixels. This patch-stride configuration represents 25% of the normalized image area (112x112 pixels) for the patch size and 12.5% of the row or column size for the stride. This study confirms that transformer architectures with overlapping patch selection can serve as an efficient and high-performing option for ear-based biometric recognition tasks in verification scenarios.