Abstract:The third Pixel-level Video Understanding in the Wild (PVUW CVPR 2024) challenge aims to advance the state of art in video understanding through benchmarking Video Panoptic Segmentation (VPS) and Video Semantic Segmentation (VSS) on challenging videos and scenes introduced in the large-scale Video Panoptic Segmentation in the Wild (VIPSeg) test set and the large-scale Video Scene Parsing in the Wild (VSPW) test set, respectively. This paper details our research work that achieved the 1st place winner in the PVUW'24 VPS challenge, establishing state of art results in all metrics, including the Video Panoptic Quality (VPQ) and Segmentation and Tracking Quality (STQ). With minor fine-tuning our approach also achieved the 3rd place in the PVUW'24 VSS challenge ranked by the mIoU (mean intersection over union) metric and the first place ranked by the VC16 (16-frame video consistency) metric. Our winning solution stands on the shoulders of giant foundational vision transformer model (DINOv2 ViT-g) and proven multi-stage Decoupled Video Instance Segmentation (DVIS) frameworks for video understanding.
Abstract:An electrocardiogram (ECG or EKG) is a medical test that measures the heart's electrical activity. ECGs are often used to diagnose and monitor a wide range of heart conditions, including arrhythmias, heart attacks, and heart failure. On the one hand, the conventional ECG requires clinical measurement, which restricts its deployment to medical facilities. On the other hand, single-lead ECG has become popular on wearable devices using administered procedures. An alternative to ECG is Photoplethysmography (PPG), which uses non-invasive, low-cost optical methods to measure cardiac physiology, making it a suitable option for capturing vital heart signs in daily life. As a result, it has become increasingly popular in health monitoring and is used in various clinical and commercial wearable devices. While ECG and PPG correlate strongly, the latter does not offer significant clinical diagnostic value. Here, we propose a subject-independent attention-based deep state-space model to translate PPG signals to corresponding ECG waveforms. The model is highly data-efficient by incorporating prior knowledge in terms of probabilistic graphical models. Notably, the model enables the detection of atrial fibrillation (AFib), the most common heart rhythm disorder in adults, by complementing ECG's accuracy with continuous PPG monitoring. We evaluated the model on 55 subjects from the MIMIC III database. Quantitative and qualitative experimental results demonstrate the effectiveness and efficiency of our approach.
Abstract:Transfer learning via fine-tuning pre-trained transformer models has gained significant success in delivering state-of-the-art results across various NLP tasks. In the absence of centralized data, Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning. However, due to the limited communication, computation, and storage capabilities of edge devices and the huge sizes of popular transformer models, efficient fine-tuning is crucial to make federated training feasible. This work explores the opportunities and challenges associated with applying parameter efficient fine-tuning (PEFT) methods in different FL settings for language tasks. Specifically, our investigation reveals that as the data across users becomes more diverse, the gap between fully fine-tuning the model and employing PEFT methods widens. To bridge this performance gap, we propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios through a novel data-driven initialization technique. Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning, with significant sparse updates with approximately $\sim 1\%$ density while reducing training time by up to $90\%$.
Abstract:We propose a novel method for training a conditional generative adversarial network (CGAN) without the use of training data, called zero-shot learning of a CGAN (ZS-CGAN). Zero-shot learning of a conditional generator only needs a pre-trained discriminative (classification) model and does not need any training data. In particular, the conditional generator is trained to produce labeled synthetic samples whose characteristics mimic the original training data by using the statistics stored in the batch normalization layers of the pre-trained model. We show the usefulness of ZS-CGAN in data-free quantization of deep neural networks. We achieved the state-of-the-art data-free network quantization of the ResNet and MobileNet classification models trained on the ImageNet dataset. Data-free quantization using ZS-CGAN showed a minimal loss in accuracy compared to that obtained by conventional data-dependent quantization.
Abstract:Most existing works on continual learning (CL) focus on overcoming the catastrophic forgetting (CF) problem, with dynamic models and replay methods performing exceptionally well. However, since current works tend to assume exclusivity or dissimilarity among learning tasks, these methods require constantly accumulating task-specific knowledge in memory for each task. This results in the eventual prohibitive expansion of the knowledge repository if we consider learning from a long sequence of tasks. In this work, we introduce a paradigm where the continual learner gets a sequence of mixed similar and dissimilar tasks. We propose a new continual learning framework that uses a task similarity detection function that does not require additional learning, with which we analyze whether there is a specific task in the past that is similar to the current task. We can then reuse previous task knowledge to slow down parameter expansion, ensuring that the CL system expands the knowledge repository sublinearly to the number of learned tasks. Our experiments show that the proposed framework performs competitively on widely used computer vision benchmarks such as CIFAR10, CIFAR100, and EMNIST.
Abstract:This paper proposes two novel knowledge transfer techniques for class-incremental learning (CIL). First, we propose data-free generative replay (DF-GR) to mitigate catastrophic forgetting in CIL by using synthetic samples from a generative model. In the conventional generative replay, the generative model is pre-trained for old data and shared in extra memory for later incremental learning. In our proposed DF-GR, we train a generative model from scratch without using any training data, based on the pre-trained classification model from the past, so we curtail the cost of sharing pre-trained generative models. Second, we introduce dual-teacher information distillation (DT-ID) for knowledge distillation from two teachers to one student. In CIL, we use DT-ID to learn new classes incrementally based on the pre-trained model for old classes and another model (pre-)trained on the new data for new classes. We implemented the proposed schemes on top of one of the state-of-the-art CIL methods and showed the performance improvement on CIFAR-100 and ImageNet datasets.
Abstract:Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data. Although it is recognized that statistical heterogeneity of the client local data yields slower global model convergence, it is less commonly recognized that it also yields a biased federated global model with a high variance of accuracy across clients. In this work, we aim to provide federated learning schemes with improved fairness. To tackle this challenge, we propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks. We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server). Empirical results on a suite of datasets demonstrate the effectiveness of our methods on simultaneously improving the test accuracy and fairness.
Abstract:MLPerf Mobile is the first industry-standard open-source mobile benchmark developed by industry members and academic researchers to allow performance/accuracy evaluation of mobile devices with different AI chips and software stacks. The benchmark draws from the expertise of leading mobile-SoC vendors, ML-framework providers, and model producers. In this paper, we motivate the drive to demystify mobile-AI performance and present MLPerf Mobile's design considerations, architecture, and implementation. The benchmark comprises a suite of models that operate under standard models, data sets, quality metrics, and run rules. For the first iteration, we developed an app to provide an "out-of-the-box" inference-performance benchmark for computer vision and natural-language processing on mobile devices. MLPerf Mobile can serve as a framework for integrating future models, for customizing quality-target thresholds to evaluate system performance, for comparing software frameworks, and for assessing heterogeneous-hardware capabilities for machine learning, all fairly and faithfully with fully reproducible results.
Abstract:In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices. In light of this need, federated learning has emerged as a popular training paradigm. However, many federated learning approaches trade transmitting data for communicating updated weight parameters for each local device. Therefore, a successful breach that would have otherwise directly compromised the data instead grants whitebox access to the local model, which opens the door to a number of attacks, including exposing the very data federated learning seeks to protect. Additionally, in distributed scenarios, individual client devices commonly exhibit high statistical heterogeneity. Many common federated approaches learn a single global model; while this may do well on average, performance degrades when the i.i.d. assumption is violated, underfitting individuals further from the mean, and raising questions of fairness. To address these issues, we propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks. Experiments on MNIST, FashionMNIST, and CIFAR-10 demonstrate WAFFLe's significant improvement to local test performance and fairness while simultaneously providing an extra layer of security.
Abstract:Network quantization is an essential procedure in deep learning for development of efficient fixed-point inference models on mobile or edge platforms. However, as datasets grow larger and privacy regulations become stricter, data sharing for model compression gets more difficult and restricted. In this paper, we consider data-free network quantization with synthetic data. The synthetic data are generated from a generator, while no data are used in training the generator and in quantization. To this end, we propose data-free adversarial knowledge distillation, which minimizes the maximum distance between the outputs of the teacher and the (quantized) student for any adversarial samples from a generator. To generate adversarial samples similar to the original data, we additionally propose matching statistics from the batch normalization layers for generated data and the original data in the teacher. Furthermore, we show the gain of producing diverse adversarial samples by using multiple generators and multiple students. Our experiments show the state-of-the-art data-free model compression and quantization results for (wide) residual networks and MobileNet on SVHN, CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets. The accuracy losses compared to using the original datasets are shown to be very minimal.