Abstract:Human-Object Interaction (HOI) detection is the task of identifying a set of <human, object, interaction> triplets from an image. Recent work proposed transformer encoder-decoder architectures that successfully eliminated the need for many hand-designed components in HOI detection through end-to-end training. However, they are limited to single-scale feature resolution, providing suboptimal performance in scenes containing humans, objects and their interactions with vastly different scales and distances. To tackle this problem, we propose a Multi-Scale TRansformer (MSTR) for HOI detection powered by two novel HOI-aware deformable attention modules called Dual-Entity attention and Entity-conditioned Context attention. While existing deformable attention comes at a huge cost in HOI detection performance, our proposed attention modules of MSTR learn to effectively attend to sampling points that are essential to identify interactions. In experiments, we achieve the new state-of-the-art performance on two HOI detection benchmarks.
Abstract:Pre-trained large-scale models provide a transferable embedding, and they show comparable performance on the diverse downstream task. However, the transferability of multi-modal learning is restricted, and the analysis of learned embedding has not been explored well. This paper provides a perspective to understand the multi-modal embedding in terms of uniformity and alignment. We newly find that the representation learned by multi-modal learning models such as CLIP has a two separated representation space for each heterogeneous dataset with less alignment. Besides, there are unexplored large intermediate areas between two modalities with less uniformity. Less robust embedding might restrict the transferability of the representation for the downstream task. This paper provides a new end-to-end fine-tuning method for robust representation that encourages better uniformity and alignment score. First, we propose a multi-modal Mixup, $m^{2}$-Mix that mixes the representation of image and text to generate the hard negative samples. Second, we fine-tune the multi-modal model on a hard negative sample as well as normal negative and positive samples with contrastive learning. Our multi-modal Mixup provides a robust representation, and we validate our methods on classification, retrieval, and structure-awareness task.
Abstract:Self-supervised learning has drawn attention through its effectiveness in learning in-domain representations with no ground-truth annotations; in particular, it is shown that properly designed pretext tasks (e.g., contrastive prediction task) bring significant performance gains for downstream tasks (e.g., classification task). Inspired from this, we tackle video scene segmentation, which is a task of temporally localizing scene boundaries in a video, with a self-supervised learning framework where we mainly focus on designing effective pretext tasks. In our framework, we discover a pseudo-boundary from a sequence of shots by splitting it into two continuous, non-overlapping sub-sequences and leverage the pseudo-boundary to facilitate the pre-training. Based on this, we introduce three novel boundary-aware pretext tasks: 1) Shot-Scene Matching (SSM), 2) Contextual Group Matching (CGM) and 3) Pseudo-boundary Prediction (PP); SSM and CGM guide the model to maximize intra-scene similarity and inter-scene discrimination while PP encourages the model to identify transitional moments. Through comprehensive analysis, we empirically show that pre-training and transferring contextual representation are both critical to improving the video scene segmentation performance. Lastly, we achieve the new state-of-the-art on the MovieNet-SSeg benchmark. The code is available at https://github.com/kakaobrain/bassl.
Abstract:The VALUE (Video-And-Language Understanding Evaluation) benchmark is newly introduced to evaluate and analyze multi-modal representation learning algorithms on three video-and-language tasks: Retrieval, QA, and Captioning. The main objective of the VALUE challenge is to train a task-agnostic model that is simultaneously applicable for various tasks with different characteristics. This technical report describes our winning strategies for the VALUE challenge: 1) single model optimization, 2) transfer learning with visual concepts, and 3) task-aware ensemble. The first and third strategies are designed to address heterogeneous characteristics of each task, and the second one is to leverage rich and fine-grained visual information. We provide a detailed and comprehensive analysis with extensive experimental results. Based on our approach, we ranked first place on the VALUE and QA phases for the competition.
Abstract:Previous deep learning-based line segment detection (LSD) suffer from the immense model size and high computational cost for line prediction. This constrains them from real-time inference on computationally restricted environments. In this paper, we propose a real-time and light-weight line segment detector for resource-constrained environments named Mobile LSD (M-LSD). We design an extremely efficient LSD architecture by minimizing the backbone network and removing the typical multi-module process for line prediction in previous methods. To maintain competitive performance with such a light-weight network, we present novel training schemes: Segments of Line segment (SoL) augmentation and geometric learning scheme. SoL augmentation splits a line segment into multiple subparts, which are used to provide auxiliary line data during the training process. Moreover, the geometric learning scheme allows a model to capture additional geometry cues from matching loss, junction and line segmentation, length and degree regression. Compared with TP-LSD-Lite, previously the best real-time LSD method, our model (M-LSD-tiny) achieves competitive performance with 2.5% of model size and an increase of 130.5% in inference speed on GPU when evaluated with Wireframe and YorkUrban datasets. Furthermore, our model runs at 56.8 FPS and 48.6 FPS on Android and iPhone mobile devices, respectively. To the best of our knowledge, this is the first real-time deep LSD method available on mobile devices.
Abstract:In this paper, we study the compositional learning of images and texts for image retrieval. The query is given in the form of an image and text that describes the desired modifications to the image; the goal is to retrieve the target image that satisfies the given modifications and resembles the query by composing information in both the text and image modalities. To accomplish this task, we propose a simple new architecture using skip connections that can effectively encode the errors between the source and target images in the latent space. Furthermore, we introduce a novel method that combines the graph convolutional network (GCN) with existing composition methods. We find that the combination consistently improves the performance in a plug-and-play manner. We perform thorough and exhaustive experiments on several widely used datasets, and achieve state-of-the-art scores on the task with our model. To ensure fairness in comparison, we suggest a strict standard for the evaluation because a small difference in the training conditions can significantly affect the final performance. We release our implementation, including that of all the compared methods, for reproducibility.
Abstract:This paper presents a study on semi-supervised learning to solve the visual attribute prediction problem. In many applications of vision algorithms, the precise recognition of visual attributes of objects is important but still challenging. This is because defining a class hierarchy of attributes is ambiguous, so training data inevitably suffer from class imbalance and label sparsity, leading to a lack of effective annotations. An intuitive solution is to find a method to effectively learn image representations by utilizing unlabeled images. With that in mind, we propose a multi-teacher-single-student (MTSS) approach inspired by the multi-task learning and the distillation of semi-supervised learning. Our MTSS learns task-specific domain experts called teacher networks using the label embedding technique and learns a unified model called a student network by forcing a model to mimic the distributions learned by domain experts. Our experiments demonstrate that our method not only achieves competitive performance on various benchmarks for fashion attribute prediction, but also improves robustness and cross-domain adaptability for unseen domains.
Abstract:This paper is dedicated to team VAA's approach submitted to the Fashion-IQ challenge in CVPR 2020. Given a pair of the image and the text, we present a novel multimodal composition method, RTIC, that can effectively combine the text and the image modalities into a semantic space. We extract the image and the text features that are encoded by the CNNs and the sequential models (e.g., LSTM or GRU), respectively. To emphasize the meaning of the residual of the feature between the target and candidate, the RTIC is composed of N-blocks with channel-wise attention modules. Then, we add the encoded residual to the feature of the candidate image to obtain a synthesized feature. We also explored an ensemble strategy with variants of models and achieved a significant boost in performance comparing to the best single model. Finally, our approach achieved 2nd place in the Fashion-IQ 2020 Challenge with a test score of 48.02 on the leaderboard.
Abstract:Many studies have been performed on metric learning, which has become a key ingredient in top-performing methods of instance-level image retrieval. Meanwhile, less attention has been paid to pre-processing and post-processing tricks that can significantly boost performance. Furthermore, we found that most previous studies used small scale datasets to simplify processing. Because the behavior of a feature representation in a deep learning model depends on both domain and data, it is important to understand how model behave in large-scale environments when a proper combination of retrieval tricks is used. In this paper, we extensively analyze the effect of well-known pre-processing, post-processing tricks, and their combination for large-scale image retrieval. We found that proper use of these tricks can significantly improve model performance without necessitating complex architecture or introducing loss, as confirmed by achieving a competitive result on the Google Landmark Retrieval Challenge 2019.
Abstract:With a growing demand for the search by image, many works have studied the task of fashion instance-level image retrieval (FIR). Furthermore, the recent works introduce a concept of fashion attribute manipulation (FAM) which manipulates a specific attribute (e.g color) of a fashion item while maintaining the rest of the attributes (e.g shape, and pattern). In this way, users can search not only "the same" items but also "similar" items with the desired attributes. FAM is a challenging task in that the attributes are hard to define, and the unique characteristics of a query are hard to be preserved. Although both FIR and FAM are important in real-life applications, most of the previous studies have focused on only one of these problem. In this study, we aim to achieve competitive performance on both FIR and FAM. To do so, we propose a novel method that converts a query into a representation with the desired attributes. We introduce a new idea of attribute manipulation at the feature level, by matching the distribution of manipulated features with real features. In this fashion, the attribute manipulation can be done independently from learning a representation from the image. By introducing the feature-level attribute manipulation, the previous methods for FIR can perform attribute manipulation without sacrificing their retrieval performance.