Abstract:In this paper, we study the compositional learning of images and texts for image retrieval. The query is given in the form of an image and text that describes the desired modifications to the image; the goal is to retrieve the target image that satisfies the given modifications and resembles the query by composing information in both the text and image modalities. To accomplish this task, we propose a simple new architecture using skip connections that can effectively encode the errors between the source and target images in the latent space. Furthermore, we introduce a novel method that combines the graph convolutional network (GCN) with existing composition methods. We find that the combination consistently improves the performance in a plug-and-play manner. We perform thorough and exhaustive experiments on several widely used datasets, and achieve state-of-the-art scores on the task with our model. To ensure fairness in comparison, we suggest a strict standard for the evaluation because a small difference in the training conditions can significantly affect the final performance. We release our implementation, including that of all the compared methods, for reproducibility.
Abstract:This paper is dedicated to team VAA's approach submitted to the Fashion-IQ challenge in CVPR 2020. Given a pair of the image and the text, we present a novel multimodal composition method, RTIC, that can effectively combine the text and the image modalities into a semantic space. We extract the image and the text features that are encoded by the CNNs and the sequential models (e.g., LSTM or GRU), respectively. To emphasize the meaning of the residual of the feature between the target and candidate, the RTIC is composed of N-blocks with channel-wise attention modules. Then, we add the encoded residual to the feature of the candidate image to obtain a synthesized feature. We also explored an ensemble strategy with variants of models and achieved a significant boost in performance comparing to the best single model. Finally, our approach achieved 2nd place in the Fashion-IQ 2020 Challenge with a test score of 48.02 on the leaderboard.