Abstract:The performance of vision-language models (VLMs), such as CLIP, in visual classification tasks, has been enhanced by leveraging semantic knowledge from large language models (LLMs), including GPT. Recent studies have shown that in zero-shot classification tasks, descriptors incorporating additional cues, high-level concepts, or even random characters often outperform those using only the category name. In many classification tasks, while the top-1 accuracy may be relatively low, the top-5 accuracy is often significantly higher. This gap implies that most misclassifications occur among a few similar classes, highlighting the model's difficulty in distinguishing between classes with subtle differences. To address this challenge, we introduce a novel concept of comparative descriptors. These descriptors emphasize the unique features of a target class against its most similar classes, enhancing differentiation. By generating and integrating these comparative descriptors into the classification framework, we refine the semantic focus and improve classification accuracy. An additional filtering process ensures that these descriptors are closer to the image embeddings in the CLIP space, further enhancing performance. Our approach demonstrates improved accuracy and robustness in visual classification tasks by addressing the specific challenge of subtle inter-class differences.
Abstract:Foundation models (FMs) have achieved significant success across various tasks, leading to research on benchmarks for reasoning abilities. However, there is a lack of studies on FMs performance in exceptional scenarios, which we define as out-of-distribution (OOD) reasoning tasks. This paper is the first to address these cases, developing a novel dataset for evaluation of FMs across multiple modalities, including graphic novels, calligraphy, news articles, and lyrics. It includes tasks for instance classification, character recognition, token prediction, and text generation. The paper also proposes prompt engineering techniques like Chain-of-Thought (CoT) and CoT+Few-Shot to enhance performance. Validation of FMs using various methods revealed improvements. The code repository is accessible at: https://github.com/MLAI-Yonsei/ExceptionalBenchmark
Abstract:Adapting a pre-trained foundation model on downstream tasks should ensure robustness against distribution shifts without the need to retrain the whole model. Although existing weight interpolation methods are simple yet effective, we argue their static nature limits downstream performance while achieving efficiency. In this work, we propose DaWin, a training-free dynamic weight interpolation method that leverages the entropy of individual models over each unlabeled test sample to assess model expertise, and compute per-sample interpolation coefficients dynamically. Unlike previous works that typically rely on additional training to learn such coefficients, our approach requires no training. Then, we propose a mixture modeling approach that greatly reduces inference overhead raised by dynamic interpolation. We validate DaWin on the large-scale visual recognition benchmarks, spanning 14 tasks across robust fine-tuning -- ImageNet and derived five distribution shift benchmarks -- and multi-task learning with eight classification tasks. Results demonstrate that DaWin achieves significant performance gain in considered settings, with minimal computational overhead. We further discuss DaWin's analytic behavior to explain its empirical success.
Abstract:With the advancement of deep neural networks in computer vision, artificial intelligence (AI) is widely employed in real-world applications. However, AI still faces limitations in mimicking high-level human capabilities, such as novel category discovery, for practical use. While some methods utilizing offline continual learning have been proposed for novel category discovery, they neglect the continuity of data streams in real-world settings. In this work, we introduce Online Continuous Generalized Category Discovery (OCGCD), which considers the dynamic nature of data streams where data can be created and deleted in real time. Additionally, we propose a novel method, DEAN, Discovery via Energy guidance and feature AugmentatioN, which can discover novel categories in an online manner through energy-guided discovery and facilitate discriminative learning via energy-based contrastive loss. Furthermore, DEAN effectively pseudo-labels unlabeled data through variance-based feature augmentation. Experimental results demonstrate that our proposed DEAN achieves outstanding performance in proposed OCGCD scenario.
Abstract:Large Language Models (LLMs) have great success in natural language processing tasks such as response generation. However, their use in tabular data has been limited due to their inferior performance compared to traditional machine learning models (TMLs) such as XGBoost. We find that the pre-trained knowledge of LLMs enables them to interpret new variables that appear in a test without additional training, a capability central to the concept of Out-of-Variable (OOV). From the findings, we propose a Language-Based-Classifier (LBC), a classifier that maximizes the benefits of LLMs to outperform TMLs on OOV tasks. LBC employs three key methodological strategies: 1) Categorical changes to adjust data to better fit the model's understanding, 2) Advanced order and indicator to enhance data representation to the model, and 3) Using verbalizer to map logit scores to classes during inference to generate model predictions. These strategies, combined with the pre-trained knowledge of LBC, emphasize the model's ability to effectively handle OOV tasks. We empirically and theoretically validate the superiority of LBC. LBC is the first study to apply an LLM-based model to OOV tasks. The source code is at https://github.com/sksmssh/LBCforOOVGen
Abstract:Accessing machine learning models through remote APIs has been gaining prevalence following the recent trend of scaling up model parameters for increased performance. Even though these models exhibit remarkable ability, detecting out-of-distribution (OOD) samples remains a crucial safety concern for end users as these samples may induce unreliable outputs from the model. In this work, we propose an OOD detection framework, MixDiff, that is applicable even when the model's parameters or its activations are not accessible to the end user. To bypass the access restriction, MixDiff applies an identical input-level perturbation to a given target sample and a similar in-distribution (ID) sample, then compares the relative difference in the model outputs of these two samples. MixDiff is model-agnostic and compatible with existing output-based OOD detection methods. We provide theoretical analysis to illustrate MixDiff's effectiveness in discerning OOD samples that induce overconfident outputs from the model and empirically demonstrate that MixDiff consistently enhances the OOD detection performance on various datasets in vision and text domains.
Abstract:The large-scale pre-trained neural network has achieved notable success in enhancing performance for downstream tasks. Another promising approach for generalization is Bayesian Neural Network (BNN), which integrates Bayesian methods into neural network architectures, offering advantages such as Bayesian Model averaging (BMA) and uncertainty quantification. Despite these benefits, transfer learning for BNNs has not been widely investigated and shows limited improvement. We hypothesize that this issue arises from the inability to find flat minima, which is crucial for generalization performance. To address this, we evaluate the sharpness of BNNs in various settings, revealing their insufficiency in seeking flat minima and the influence of flatness on BMA performance. Therefore, we propose Sharpness-aware Bayesian Model Averaging (SA-BMA), a Bayesian-fitting flat posterior seeking optimizer integrated with Bayesian transfer learning. SA-BMA calculates the divergence between posteriors in the parameter space, aligning with the nature of BNNs, and serves as a generalized version of existing sharpness-aware optimizers. We validate that SA-BMA improves generalization performance in few-shot classification and distribution shift scenarios by ensuring flatness.
Abstract:Few-Shot Class Incremental Learning (FSCIL) is a task that requires a model to learn new classes incrementally without forgetting when only a few samples for each class are given. FSCIL encounters two significant challenges: catastrophic forgetting and overfitting, and these challenges have driven prior studies to primarily rely on shallow models, such as ResNet-18. Even though their limited capacity can mitigate both forgetting and overfitting issues, it leads to inadequate knowledge transfer during few-shot incremental sessions. In this paper, we argue that large models such as vision and language transformers pre-trained on large datasets can be excellent few-shot incremental learners. To this end, we propose a novel FSCIL framework called PriViLege, Pre-trained Vision and Language transformers with prompting functions and knowledge distillation. Our framework effectively addresses the challenges of catastrophic forgetting and overfitting in large models through new pre-trained knowledge tuning (PKT) and two losses: entropy-based divergence loss and semantic knowledge distillation loss. Experimental results show that the proposed PriViLege significantly outperforms the existing state-of-the-art methods with a large margin, e.g., +9.38% in CUB200, +20.58% in CIFAR-100, and +13.36% in miniImageNet. Our implementation code is available at https://github.com/KHU-AGI/PriViLege.
Abstract:Approaches to improving multilingual language understanding often require multiple languages during the training phase, rely on complicated training techniques, and -- importantly -- struggle with significant performance gaps between high-resource and low-resource languages. We hypothesize that the performance gaps between languages are affected by linguistic gaps between those languages and provide a novel solution for robust multilingual language modeling by employing phonemic representations (specifically, using phonemes as input tokens to LMs rather than subwords). We present quantitative evidence from three cross-lingual tasks that demonstrate the effectiveness of phonemic representation, which is further justified by a theoretical analysis of the cross-lingual performance gap.
Abstract:While fine-tuning unlocks the potential of a pre-trained model for a specific task, it compromises the model's ability to generalize to out-of-distribution (OOD) datasets. To mitigate this, robust fine-tuning aims to ensure performance on OOD datasets as well as on an in-distribution (ID) dataset for which the model is being tuned. However, another criterion for reliable machine learning (ML), confidence calibration, has been overlooked despite its increasing demand for real-world high-stakes ML applications (e.g., autonomous driving and medical diagnosis). For the first time, we raise concerns about the calibration of fine-tuned vision-language models (VLMs) under distribution shift by showing that naive fine-tuning and even state-of-the-art robust fine-tuning methods hurt the calibration of pre-trained VLMs, especially on OOD datasets. To address this issue, we provide a simple approach, called calibrated robust fine-tuning (CaRot), that incentivizes calibration and robustness on both ID and OOD datasets. Empirical results on ImageNet-1K distribution shift evaluation verify the effectiveness of our method.