Abstract:The performance of vision-language models (VLMs), such as CLIP, in visual classification tasks, has been enhanced by leveraging semantic knowledge from large language models (LLMs), including GPT. Recent studies have shown that in zero-shot classification tasks, descriptors incorporating additional cues, high-level concepts, or even random characters often outperform those using only the category name. In many classification tasks, while the top-1 accuracy may be relatively low, the top-5 accuracy is often significantly higher. This gap implies that most misclassifications occur among a few similar classes, highlighting the model's difficulty in distinguishing between classes with subtle differences. To address this challenge, we introduce a novel concept of comparative descriptors. These descriptors emphasize the unique features of a target class against its most similar classes, enhancing differentiation. By generating and integrating these comparative descriptors into the classification framework, we refine the semantic focus and improve classification accuracy. An additional filtering process ensures that these descriptors are closer to the image embeddings in the CLIP space, further enhancing performance. Our approach demonstrates improved accuracy and robustness in visual classification tasks by addressing the specific challenge of subtle inter-class differences.
Abstract:Vision language models (VLMs) perceive the world through a combination of a visual encoder and a large language model (LLM). The visual encoder, pre-trained on large-scale vision-text datasets, provides zero-shot generalization to visual data, and the LLM endows its high reasoning ability to VLMs. It leads VLMs to achieve high performance on wide benchmarks without fine-tuning, exhibiting zero or few-shot capability. However, recent studies show that VLMs are vulnerable to hallucination. This undesirable behavior degrades reliability and credibility, thereby making users unable to fully trust the output from VLMs. To enhance trustworthiness and better tackle the hallucination of VLMs, we curate a new evaluation dataset, called the BEfore-AFter hallucination dataset (BEAF), and introduce new metrics: True Understanding (TU), IGnorance (IG), StuBbornness (SB), and InDecision (ID). Unlike prior works that focus only on constructing questions and answers, the key idea of our benchmark is to manipulate visual scene information by image editing models and to design the metrics based on scene changes. This allows us to clearly assess whether VLMs correctly understand a given scene by observing the ability to perceive changes. We also visualize image-wise object relationship by virtue of our two-axis view: vision and text. Upon evaluating VLMs with our dataset, we observed that our metrics reveal different aspects of VLM hallucination that have not been reported before. Project page: \url{https://beafbench.github.io/}
Abstract:We live in a vast ocean of data, and deep neural networks are no exception to this. However, this data exhibits an inherent phenomenon of imbalance. This imbalance poses a risk of deep neural networks producing biased predictions, leading to potentially severe ethical and social consequences. To address these challenges, we believe that the use of generative models is a promising approach for comprehending tasks, given the remarkable advancements demonstrated by recent diffusion models in generating high-quality images. In this work, we propose a simple yet effective baseline, SYNAuG, that utilizes synthetic data as a preliminary step before employing task-specific algorithms to address data imbalance problems. This straightforward approach yields impressive performance on datasets such as CIFAR100-LT, ImageNet100-LT, UTKFace, and Waterbird, surpassing the performance of existing task-specific methods. While we do not claim that our approach serves as a complete solution to the problem of data imbalance, we argue that supplementing the existing data with synthetic data proves to be an effective and crucial preliminary step in addressing data imbalance concerns.