Abstract:Large Language Models (LLMs) have demonstrated impressive capabilities in reasoning using Chain-of-Thought (CoT) prompting. However, CoT can be biased by users' instruction. In this work, we study the reasoning robustness of LLMs to typographical errors, which can naturally occur in users' queries. We design an Adversarial Typo Attack ($\texttt{ATA}$) algorithm that iteratively samples typos for words that are important to the query and selects the edit that is most likely to succeed in attacking. It shows that LLMs are sensitive to minimal adversarial typographical changes. Notably, with 1 character edit, Mistral-7B-Instruct's accuracy drops from 43.7% to 38.6% on GSM8K, while with 8 character edits the performance further drops to 19.2%. To extend our evaluation to larger and closed-source LLMs, we develop the $\texttt{R$^2$ATA}$ benchmark, which assesses models' $\underline{R}$easoning $\underline{R}$obustness to $\underline{\texttt{ATA}}$. It includes adversarial typographical questions derived from three widely used reasoning datasets-GSM8K, BBH, and MMLU-by applying $\texttt{ATA}$ to open-source LLMs. $\texttt{R$^2$ATA}$ demonstrates remarkable transferability and causes notable performance drops across multiple super large and closed-source LLMs.
Abstract:Perceiving and generating diverse modalities are crucial for AI models to effectively learn from and engage with real-world signals, necessitating reliable evaluations for their development. We identify two major issues in current evaluations: (1) inconsistent standards, shaped by different communities with varying protocols and maturity levels; and (2) significant query, grading, and generalization biases. To address these, we introduce MixEval-X, the first any-to-any real-world benchmark designed to optimize and standardize evaluations across input and output modalities. We propose multi-modal benchmark mixture and adaptation-rectification pipelines to reconstruct real-world task distributions, ensuring evaluations generalize effectively to real-world use cases. Extensive meta-evaluations show our approach effectively aligns benchmark samples with real-world task distributions and the model rankings correlate strongly with that of crowd-sourced real-world evaluations (up to 0.98). We provide comprehensive leaderboards to rerank existing models and organizations and offer insights to enhance understanding of multi-modal evaluations and inform future research.
Abstract:Language Language Models (LLMs) face safety concerns due to potential misuse by malicious users. Recent red-teaming efforts have identified adversarial suffixes capable of jailbreaking LLMs using the gradient-based search algorithm Greedy Coordinate Gradient (GCG). However, GCG struggles with computational inefficiency, limiting further investigations regarding suffix transferability and scalability across models and data. In this work, we bridge the connection between search efficiency and suffix transferability. We propose a two-stage transfer learning framework, DeGCG, which decouples the search process into behavior-agnostic pre-searching and behavior-relevant post-searching. Specifically, we employ direct first target token optimization in pre-searching to facilitate the search process. We apply our approach to cross-model, cross-data, and self-transfer scenarios. Furthermore, we introduce an interleaved variant of our approach, i-DeGCG, which iteratively leverages self-transferability to accelerate the search process. Experiments on HarmBench demonstrate the efficiency of our approach across various models and domains. Notably, our i-DeGCG outperforms the baseline on Llama2-chat-7b with ASRs of $43.9$ ($+22.2$) and $39.0$ ($+19.5$) on valid and test sets, respectively. Further analysis on cross-model transfer indicates the pivotal role of first target token optimization in leveraging suffix transferability for efficient searching.
Abstract:Large Language Models (LLMs) excel in stand-alone code tasks like HumanEval and MBPP, but struggle with handling entire code repositories. This challenge has prompted research on enhancing LLM-codebase interaction at a repository scale. Current solutions rely on similarity-based retrieval or manual tools and APIs, each with notable drawbacks. Similarity-based retrieval often has low recall in complex tasks, while manual tools and APIs are typically task-specific and require expert knowledge, reducing their generalizability across diverse code tasks and real-world applications. To mitigate these limitations, we introduce \framework, a system that integrates LLM agents with graph database interfaces extracted from code repositories. By leveraging the structural properties of graph databases and the flexibility of the graph query language, \framework enables the LLM agent to construct and execute queries, allowing for precise, code structure-aware context retrieval and code navigation. We assess \framework using three benchmarks: CrossCodeEval, SWE-bench, and EvoCodeBench. Additionally, we develop five real-world coding applications. With a unified graph database schema, \framework demonstrates competitive performance and potential in both academic and real-world environments, showcasing its versatility and efficacy in software engineering. Our application demo: https://github.com/modelscope/modelscope-agent/tree/master/apps/codexgraph_agent.
Abstract:When LLMs are deployed in sensitive, human-facing settings, it is crucial that they do not output unsafe, biased, or privacy-violating outputs. For this reason, models are both trained and instructed to refuse to answer unsafe prompts such as "Tell me how to build a bomb." We find that, despite these safeguards, it is possible to break model defenses simply by appending a space to the end of a model's input. In a study of eight open-source models, we demonstrate that this acts as a strong enough attack to cause the majority of models to generate harmful outputs with very high success rates. We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted, overriding training signals to refuse to answer unsafe requests. Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods. Code and data will be available at https://github.com/hannah-aught/space_attack.
Abstract:When LLMs are deployed in sensitive, human-facing settings, it is crucial that they do not output unsafe, biased, or privacy-violating outputs. For this reason, models are both trained and instructed to refuse to answer unsafe prompts such as "Tell me how to build a bomb." We find that, despite these safeguards, it is possible to break model defenses simply by appending a space to the end of a model's input. In a study of eight open-source models, we demonstrate that this acts as a strong enough attack to cause the majority of models to generate harmful outputs with very high success rates. We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted, overriding training signals to refuse to answer unsafe requests. Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods. Code and data will be made available at https://github.com/Linlt-leon/Adversarial-Alignments.
Abstract:We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process inspired by the successful strategy employed by AlphaZero. Our work leverages Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals. To enhance consistency in intermediate steps, we combine outcome validation and stepwise self-evaluation, continually updating the quality assessment of newly generated data. The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data. Theoretical analysis reveals the critical importance of using on-policy sampled data for successful self-improving. Extensive evaluations on various arithmetic and commonsense reasoning tasks demonstrate remarkable performance improvements over existing models. For instance, our approach outperforms the Mistral-7B Supervised Fine-Tuning (SFT) baseline on GSM8K, MATH, and SciQ, with substantial percentage increases in accuracy to $80.7\%$ (+$4.8\%$), $32.2\%$ (+$3.3\%$), and $88.5\%$ (+$7.7\%$), respectively. Additionally, our research delves into the training and inference compute tradeoff, providing insights into how our method effectively maximizes performance gains.
Abstract:Safety of Large Language Models (LLMs) has become a central issue given their rapid progress and wide applications. Greedy Coordinate Gradient (GCG) is shown to be effective in constructing prompts containing adversarial suffixes to break the presumingly safe LLMs, but the optimization of GCG is time-consuming and limits its practicality. To reduce the time cost of GCG and enable more comprehensive studies of LLM safety, in this work, we study a new algorithm called $\texttt{Probe sampling}$ to accelerate the GCG algorithm. At the core of the algorithm is a mechanism that dynamically determines how similar a smaller draft model's predictions are to the target model's predictions for prompt candidates. When the target model is similar to the draft model, we rely heavily on the draft model to filter out a large number of potential prompt candidates to reduce the computation time. Probe sampling achieves up to $5.6$ times speedup using Llama2-7b and leads to equal or improved attack success rate (ASR) on the AdvBench.