Abstract:External tools help large language models (LLMs) succeed at tasks where they would otherwise typically fail. In existing frameworks, LLMs learn tool use either by in-context demonstrations or via full model fine-tuning on annotated data. As these approaches do not easily scale, a recent trend is to abandon them in favor of lightweight, parameter-efficient tuning paradigms. These methods allow quickly alternating between the frozen LLM and its specialised fine-tuned version, by switching on or off a handful of additional custom parameters. Hence, we postulate that the generalization ability of the frozen model can be leveraged to improve tool selection. We present Tool selECTion via meta-reasONing (TECTON), a two-phase system that first reasons over a task using a custom fine-tuned LM head and outputs candidate tools. Then, with the custom head disabled, it meta-reasons (i.e., it reasons over the previous reasoning process) to make a final choice. We show that TECTON results in substantial gains - both in-distribution and out-of-distribution - on a range of math reasoning datasets.
Abstract:In this work, we propose a computational framework that leverages existing out-of-language data to create a conversational agent for the delivery of Self-Attachment Technique (SAT) in Mandarin. Our framework does not require large-scale human translations, yet it achieves a comparable performance whilst also maintaining safety and reliability. We propose two different methods of augmenting available response data through empathetic rewriting. We evaluate our chatbot against a previous, English-only SAT chatbot through non-clinical human trials (N=42), each lasting five days, and quantitatively show that we are able to attain a comparable level of performance to the English SAT chatbot. We provide qualitative analysis on the limitations of our study and suggestions with the aim of guiding future improvements.
Abstract:In the wake of the post-pandemic era, marked by social isolation and surging rates of depression and anxiety, conversational agents based on digital psychotherapy can play an influential role compared to traditional therapy sessions. In this work, we develop a voice-capable chatbot in Farsi to guide users through Self-Attachment (SAT), a novel, self-administered, holistic psychological technique based on attachment theory. Our chatbot uses a dynamic array of rule-based and classification-based modules to comprehend user input throughout the conversation and navigates a dialogue flowchart accordingly, recommending appropriate SAT exercises that depend on the user's emotional and mental state. In particular, we collect a dataset of over 6,000 utterances and develop a novel sentiment-analysis module that classifies user sentiment into 12 classes, with accuracy above 92%. To keep the conversation novel and engaging, the chatbot's responses are retrieved from a large dataset of utterances created with the aid of Farsi GPT-2 and a reinforcement learning approach, thus requiring minimal human annotation. Our chatbot also offers a question-answering module, called SAT Teacher, to answer users' questions about the principles of Self-Attachment. Finally, we design a cross-platform application as the bot's user interface. We evaluate our platform in a ten-day human study with N=52 volunteers from the non-clinical population, who have had over 2,000 dialogues in total with the chatbot. The results indicate that the platform was engaging to most users (75%), 72% felt better after the interactions, and 74% were satisfied with the SAT Teacher's performance.
Abstract:This paper studies ensembling in the era of Large Vision-Language Models (LVLMs). Ensembling is a classical method to combine different models to get increased performance. In the recent work on Encyclopedic-VQA the authors examine a wide variety of models to solve their task: from vanilla LVLMs, to models including the caption as extra context, to models augmented with Lens-based retrieval of Wikipedia pages. Intuitively these models are highly complementary, which should make them ideal for ensembling. Indeed, an oracle experiment shows potential gains from 48.8% accuracy (the best single model) all the way up to 67% (best possible ensemble). So it is a trivial exercise to create an ensemble with substantial real gains. Or is it?
Abstract:In this work, we present a new dataset and a computational strategy for a digital coach that aims to guide users in practicing the protocols of self-attachment therapy. Our framework augments a rule-based conversational agent with a deep-learning classifier for identifying the underlying emotion in a user's text response, as well as a deep-learning assisted retrieval method for producing novel, fluent and empathetic utterances. We also craft a set of human-like personas that users can choose to interact with. Our goal is to achieve a high level of engagement during virtual therapy sessions. We evaluate the effectiveness of our framework in a non-clinical trial with N=16 participants, all of whom have had at least four interactions with the agent over the course of five days. We find that our platform is consistently rated higher for empathy, user engagement and usefulness than the simple rule-based framework. Finally, we provide guidelines to further improve the design and performance of the application, in accordance with the feedback received.