Abstract:Large Language Models (LLMs) have made significant progress in advancing artificial general intelligence (AGI), leading to the development of increasingly large models such as GPT-4 and LLaMA-405B. However, scaling up model sizes results in exponentially higher computational costs and energy consumption, making these models impractical for academic researchers and businesses with limited resources. At the same time, Small Models (SMs) are frequently used in practical settings, although their significance is currently underestimated. This raises important questions about the role of small models in the era of LLMs, a topic that has received limited attention in prior research. In this work, we systematically examine the relationship between LLMs and SMs from two key perspectives: Collaboration and Competition. We hope this survey provides valuable insights for practitioners, fostering a deeper understanding of the contribution of small models and promoting more efficient use of computational resources. The code is available at https://github.com/tigerchen52/role_of_small_models
Abstract:Large Language Models (LLMs) possess vast amounts of knowledge within their parameters, prompting research into methods for locating and editing this knowledge. Previous investigations have primarily focused on fill-in-the-blank tasks and locating entity-related usually single-token facts) information in relatively small-scale language models. However, several key questions remain unanswered: (1) How can we effectively locate query-relevant neurons in contemporary autoregressive LLMs, such as LLaMA and Mistral? (2) How can we address the challenge of long-form text generation? (3) Are there localized knowledge regions in LLMs? In this study, we introduce Neuron Attribution-Inverse Cluster Attribution (NA-ICA), a novel architecture-agnostic framework capable of identifying key neurons in LLMs. NA-ICA allows for the examination of long-form answers beyond single tokens by employing the proxy task of multi-choice question answering. To evaluate the effectiveness of our detected key neurons, we construct two multi-choice QA datasets spanning diverse domains and languages. Empirical evaluations demonstrate that NA-ICA outperforms baseline methods significantly. Moreover, analysis of neuron distributions reveals the presence of visible localized regions, particularly within different domains. Finally, we demonstrate the potential applications of our detected key neurons in knowledge editing and neuron-based prediction.
Abstract:Large Language Models (LLMs), including ChatGPT and LLaMA, are susceptible to generating hallucinated answers in a confident tone. While efforts to elicit and calibrate confidence scores have proven useful, recent findings show that controlling uncertainty must go beyond calibration: predicted scores may deviate significantly from the actual posterior probabilities due to the impact of grouping loss. In this work, we construct a new evaluation dataset derived from a knowledge base to assess confidence scores given to answers of Mistral and LLaMA. Experiments show that they tend to be overconfident. Further, we show that they are more overconfident on some answers than others, \emph{eg} depending on the nationality of the person in the query. In uncertainty-quantification theory, this is grouping loss. To address this, we propose a solution to reconfidence LLMs, canceling not only calibration but also grouping loss. The LLMs, after the reconfidencing process, indicate improved confidence alignment with the accuracy of their responses.
Abstract:Phrase representations play an important role in data science and natural language processing, benefiting various tasks like Entity Alignment, Record Linkage, Fuzzy Joins, and Paraphrase Classification. The current state-of-the-art method involves fine-tuning pre-trained language models for phrasal embeddings using contrastive learning. However, we have identified areas for improvement. First, these pre-trained models tend to be unnecessarily complex and require to be pre-trained on a corpus with context sentences. Second, leveraging the phrase type and morphology gives phrase representations that are both more precise and more flexible. We propose an improved framework to learn phrase representations in a context-free fashion. The framework employs phrase type classification as an auxiliary task and incorporates character-level information more effectively into the phrase representation. Furthermore, we design three granularities of data augmentation to increase the diversity of training samples. Our experiments across a wide range of tasks show that our approach generates superior phrase embeddings compared to previous methods while requiring a smaller model size. The code is available at \faGithub~ \url{https://github.com/tigerchen52/PEARL} \end{abstract}
Abstract:Positional Encodings (PEs) are used to inject word-order information into transformer-based language models. While they can significantly enhance the quality of sentence representations, their specific contribution to language models is not fully understood, especially given recent findings that various positional encodings are insensitive to word order. In this work, we conduct a systematic study of positional encodings in \textbf{Bidirectional Masked Language Models} (BERT-style) , which complements existing work in three aspects: (1) We uncover the core function of PEs by identifying two common properties, Locality and Symmetry; (2) We show that the two properties are closely correlated with the performances of downstream tasks; (3) We quantify the weakness of current PEs by introducing two new probing tasks, on which current PEs perform poorly. We believe that these results are the basis for developing better PEs for transformer-based language models. The code is available at \faGithub~ \url{https://github.com/tigerchen52/locality\_symmetry}
Abstract:Despite their impressive scale, knowledge bases (KBs), such as Wikidata, still contain significant gaps. Language models (LMs) have been proposed as a source for filling these gaps. However, prior works have focused on prominent entities with rich coverage by LMs, neglecting the crucial case of long-tail entities. In this paper, we present a novel method for LM-based-KB completion that is specifically geared for facts about long-tail entities. The method leverages two different LMs in two stages: for candidate retrieval and for candidate verification and disambiguation. To evaluate our method and various baselines, we introduce a novel dataset, called MALT, rooted in Wikidata. Our method outperforms all baselines in F1, with major gains especially in recall.
Abstract:Acronym Disambiguation (AD) is crucial for natural language understanding on various sources, including biomedical reports, scientific papers, and search engine queries. However, existing acronym disambiguation benchmarks and tools are limited to specific domains, and the size of prior benchmarks is rather small. To accelerate the research on acronym disambiguation, we construct a new benchmark named GLADIS with three components: (1) a much larger acronym dictionary with 1.5M acronyms and 6.4M long forms; (2) a pre-training corpus with 160 million sentences; (3) three datasets that cover the general, scientific, and biomedical domains. We then pre-train a language model, \emph{AcroBERT}, on our constructed corpus for general acronym disambiguation, and show the challenges and values of our new benchmark.
Abstract:State-of-the-art NLP systems represent inputs with word embeddings, but these are brittle when faced with Out-of-Vocabulary (OOV) words. To address this issue, we follow the principle of mimick-like models to generate vectors for unseen words, by learning the behavior of pre-trained embeddings using only the surface form of words. We present a simple contrastive learning framework, LOVE, which extends the word representation of an existing pre-trained language model (such as BERT), and makes it robust to OOV with few additional parameters. Extensive evaluations demonstrate that our lightweight model achieves similar or even better performances than prior competitors, both on original datasets and on corrupted variants. Moreover, it can be used in a plug-and-play fashion with FastText and BERT, where it significantly improves their robustness.
Abstract:Biomedical entity linking aims to map biomedical mentions, such as diseases and drugs, to standard entities in a given knowledge base. The specific challenge in this context is that the same biomedical entity can have a wide range of names, including synonyms, morphological variations, and names with different word orderings. Recently, BERT-based methods have advanced the state-of-the-art by allowing for rich representations of word sequences. However, they often have hundreds of millions of parameters and require heavy computing resources, which limits their applications in resource-limited scenarios. Here, we propose a lightweight neural method for biomedical entity linking, which needs just a fraction of the parameters of a BERT model and much less computing resources. Our method uses a simple alignment layer with attention mechanisms to capture the variations between mention and entity names. Yet, we show that our model is competitive with previous work on standard evaluation benchmarks.