Abstract:Large Language Models (LLMs) are highly vulnerable to input perturbations, as even a small prompt change may result in a substantially different output. Existing methods to enhance LLM robustness are primarily focused on perturbed data samples, whereas improving resiliency to perturbations of task-level instructions has remained relatively underexplored. In this work, we focus on character- and word-level edits of task-specific instructions, which substantially degrade downstream performance. We experiment with a variety of techniques to enhance the robustness of LLMs, including self-denoising and representation alignment, testing different models (Llama 3 and Flan-T5), datasets (CoLA, QNLI, SST-2) and instructions (both task-oriented and role-oriented). We find that, on average, self-denoising -- whether performed by a frozen LLM or a fine-tuned model -- achieves substantially higher performance gains than alternative strategies, including more complex baselines such as ensembling and supervised methods.
Abstract:This paper introduces a novel paradigm for depression detection and treatment using advanced Large Language Models (LLMs): Generative Pre-trained Transformer 4 (GPT-4), Llama 2 chat, and Gemini. These LLMs are fine-tuned with specialized prompts to diagnose, explain, and suggest therapeutic interventions for depression. A unique few-shot prompting method enhances the models' ability to analyze and explain depressive symptoms based on the DSM-5 criteria. In the interaction phase, the models engage in empathetic dialogue management, drawing from resources like PsychDB and a Cognitive Behavioral Therapy (CBT) Guide, fostering supportive interactions with individuals experiencing major depressive disorders. Additionally, the research introduces the Illuminate Database, enriched with various CBT modules, aiding in personalized therapy recommendations. The study evaluates LLM performance using metrics such as F1 scores, Precision, Recall, Cosine similarity, and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) across different test sets, demonstrating their effectiveness. This comprehensive approach blends cutting-edge AI with established psychological methods, offering new possibilities in mental health care and showcasing the potential of LLMs in revolutionizing depression diagnosis and treatment strategies.