Abstract:Sign language video retrieval plays a key role in facilitating information access for the deaf community. Despite significant advances in video-text retrieval, the complexity and inherent uncertainty of sign language preclude the direct application of these techniques. Previous methods achieve the mapping between sign language video and text through fine-grained modal alignment. However, due to the scarcity of fine-grained annotation, the uncertainty inherent in sign language video is underestimated, limiting the further development of sign language retrieval tasks. To address this challenge, we propose a novel Uncertainty-aware Probability Distribution Retrieval (UPRet), that conceptualizes the mapping process of sign language video and text in terms of probability distributions, explores their potential interrelationships, and enables flexible mappings. Experiments on three benchmarks demonstrate the effectiveness of our method, which achieves state-of-the-art results on How2Sign (59.1%), PHOENIX-2014T (72.0%), and CSL-Daily (78.4%).
Abstract:The advent of large vision-language models (LVLMs) represents a noteworthy advancement towards the pursuit of artificial general intelligence. However, the extent of their efficacy across both specialized and general tasks warrants further investigation. This article endeavors to evaluate the competency of popular LVLMs in specialized and general tasks, respectively, aiming to offer a comprehensive comprehension of these innovative methodologies. To gauge their efficacy in specialized tasks, we tailor a comprehensive testbed comprising three distinct scenarios: natural, healthcare, and industrial, encompassing six challenging tasks. These tasks include salient, camouflaged, and transparent object detection, as well as polyp and skin lesion detection, alongside industrial anomaly detection. We examine the performance of three recent open-source LVLMs -- MiniGPT-v2, LLaVA-1.5, and Shikra -- in the realm of visual recognition and localization. Moreover, we conduct empirical investigations utilizing the aforementioned models alongside GPT-4V, assessing their multi-modal understanding capacities in general tasks such as object counting, absurd question answering, affordance reasoning, attribute recognition, and spatial relation reasoning. Our investigations reveal that these models demonstrate limited proficiency not only in specialized tasks but also in general tasks. We delve deeper into this inadequacy and suggest several potential factors, including limited cognition in specialized tasks, object hallucination, text-to-image interference, and decreased robustness in complex problems. We hope this study would provide valuable insights for the future development of LVLMs, augmenting their power in coping with both general and specialized applications.
Abstract:Camouflage poses challenges in distinguishing a static target, whereas any movement of the target can break this disguise. Existing video camouflaged object detection (VCOD) approaches take noisy motion estimation as input or model motion implicitly, restricting detection performance in complex dynamic scenes. In this paper, we propose a novel Explicit Motion handling and Interactive Prompting framework for VCOD, dubbed EMIP, which handles motion cues explicitly using a frozen pre-trained optical flow fundamental model. EMIP is characterized by a two-stream architecture for simultaneously conducting camouflaged segmentation and optical flow estimation. Interactions across the dual streams are realized in an interactive prompting way that is inspired by emerging visual prompt learning. Two learnable modules, i.e. the camouflaged feeder and motion collector, are designed to incorporate segmentation-to-motion and motion-to-segmentation prompts, respectively, and enhance outputs of the both streams. The prompt fed to the motion stream is learned by supervising optical flow in a self-supervised manner. Furthermore, we show that long-term historical information can also be incorporated as a prompt into EMIP and achieve more robust results with temporal consistency. Experimental results demonstrate that our EMIP achieves new state-of-the-art records on popular VCOD benchmarks. The code will be publicly available.
Abstract:Person re-identification (re-ID) continues to pose a significant challenge, particularly in scenarios involving occlusions. Prior approaches aimed at tackling occlusions have predominantly focused on aligning physical body features through the utilization of external semantic cues. However, these methods tend to be intricate and susceptible to noise. To address the aforementioned challenges, we present an innovative end-to-end solution known as the Dynamic Patch-aware Enrichment Transformer (DPEFormer). This model effectively distinguishes human body information from occlusions automatically and dynamically, eliminating the need for external detectors or precise image alignment. Specifically, we introduce a dynamic patch token selection module (DPSM). DPSM utilizes a label-guided proxy token as an intermediary to identify informative occlusion-free tokens. These tokens are then selected for deriving subsequent local part features. To facilitate the seamless integration of global classification features with the finely detailed local features selected by DPSM, we introduce a novel feature blending module (FBM). FBM enhances feature representation through the complementary nature of information and the exploitation of part diversity. Furthermore, to ensure that DPSM and the entire DPEFormer can effectively learn with only identity labels, we also propose a Realistic Occlusion Augmentation (ROA) strategy. This strategy leverages the recent advances in the Segment Anything Model (SAM). As a result, it generates occlusion images that closely resemble real-world occlusions, greatly enhancing the subsequent contrastive learning process. Experiments on occluded and holistic re-ID benchmarks signify a substantial advancement of DPEFormer over existing state-of-the-art approaches. The code will be made publicly available.
Abstract:Segmenting any object represents a crucial step towards achieving artificial general intelligence, and the "Segment Anything Model" (SAM) has significantly advanced the development of foundational models in computer vision. We have high expectations regarding whether SAM can enhance highly accurate dichotomous image segmentation. In fact, the evidence presented in this article demonstrates that by inputting SAM with simple prompt boxes and utilizing the results output by SAM as input for IS5Net, we can greatly improve the effectiveness of highly accurate dichotomous image segmentation.
Abstract:Given the widespread adoption of depth-sensing acquisition devices, RGB-D videos and related data/media have gained considerable traction in various aspects of daily life. Consequently, conducting salient object detection (SOD) in RGB-D videos presents a highly promising and evolving avenue. Despite the potential of this area, SOD in RGB-D videos remains somewhat under-explored, with RGB-D SOD and video SOD (VSOD) traditionally studied in isolation. To explore this emerging field, this paper makes two primary contributions: the dataset and the model. On one front, we construct the RDVS dataset, a new RGB-D VSOD dataset with realistic depth and characterized by its diversity of scenes and rigorous frame-by-frame annotations. We validate the dataset through comprehensive attribute and object-oriented analyses, and provide training and testing splits. Moreover, we introduce DCTNet+, a three-stream network tailored for RGB-D VSOD, with an emphasis on RGB modality and treats depth and optical flow as auxiliary modalities. In pursuit of effective feature enhancement, refinement, and fusion for precise final prediction, we propose two modules: the multi-modal attention module (MAM) and the refinement fusion module (RFM). To enhance interaction and fusion within RFM, we design a universal interaction module (UIM) and then integrate holistic multi-modal attentive paths (HMAPs) for refining multi-modal low-level features before reaching RFMs. Comprehensive experiments, conducted on pseudo RGB-D video datasets alongside our RDVS, highlight the superiority of DCTNet+ over 17 VSOD models and 14 RGB-D SOD models. Ablation experiments were performed on both pseudo and realistic RGB-D video datasets to demonstrate the advantages of individual modules as well as the necessity of introducing realistic depth. Our code together with RDVS dataset will be available at https://github.com/kerenfu/RDVS/.
Abstract:Light field salient object detection (SOD) is an emerging research direction attributed to the richness of light field data. However, most existing methods lack effective handling of focal stacks, therefore making the latter involved in a lot of interfering information and degrade the performance of SOD. To address this limitation, we propose to utilize multi-modal features to refine focal stacks in a guided manner, resulting in a novel guided focal stack refinement network called GFRNet. To this end, we propose a guided refinement and fusion module (GRFM) to refine focal stacks and aggregate multi-modal features. In GRFM, all-in-focus (AiF) and depth modalities are utilized to refine focal stacks separately, leading to two novel sub-modules for different modalities, namely AiF-based refinement module (ARM) and depth-based refinement module (DRM). Such refinement modules enhance structural and positional information of salient objects in focal stacks, and are able to improve SOD accuracy. Experimental results on four benchmark datasets demonstrate the superiority of our GFRNet model against 12 state-of-the-art models.
Abstract:Recently CNN-based RGB-D salient object detection (SOD) has obtained significant improvement on detection accuracy. However, existing models often fail to perform well in terms of efficiency and accuracy simultaneously. This hinders their potential applications on mobile devices as well as many real-world problems. To bridge the accuracy gap between lightweight and large models for RGB-D SOD, in this paper, an efficient module that can greatly improve the accuracy but adds little computation is proposed. Inspired by the fact that depth quality is a key factor influencing the accuracy, we propose an efficient depth quality-inspired feature manipulation (DQFM) process, which can dynamically filter depth features according to depth quality. The proposed DQFM resorts to the alignment of low-level RGB and depth features, as well as holistic attention of the depth stream to explicitly control and enhance cross-modal fusion. We embed DQFM to obtain an efficient lightweight RGB-D SOD model called DFM-Net, where we in addition design a tailored depth backbone and a two-stage decoder as basic parts. Extensive experimental results on nine RGB-D datasets demonstrate that our DFM-Net outperforms recent efficient models, running at about 20 FPS on CPU with only 8.5Mb model size, and meanwhile being 2.9/2.4 times faster and 6.7/3.1 times smaller than the latest best models A2dele and MobileSal. It also maintains state-of-the-art accuracy when even compared to non-efficient models. Interestingly, further statistics and analyses verify the ability of DQFM in distinguishing depth maps of various qualities without any quality labels. Last but not least, we further apply DFM-Net to deal with video SOD (VSOD), achieving comparable performance against recent efficient models while being 3/2.3 times faster/smaller than the prior best in this field. Our code is available at https://github.com/zwbx/DFM-Net.
Abstract:Depth can provide useful geographical cues for salient object detection (SOD), and has been proven helpful in recent RGB-D SOD methods. However, existing video salient object detection (VSOD) methods only utilize spatiotemporal information and seldom exploit depth information for detection. In this paper, we propose a depth-cooperated trimodal network, called DCTNet for VSOD, which is a pioneering work to incorporate depth information to assist VSOD. To this end, we first generate depth from RGB frames, and then propose an approach to treat the three modalities unequally. Specifically, a multi-modal attention module (MAM) is designed to model multi-modal long-range dependencies between the main modality (RGB) and the two auxiliary modalities (depth, optical flow). We also introduce a refinement fusion module (RFM) to suppress noises in each modality and select useful information dynamically for further feature refinement. Lastly, a progressive fusion strategy is adopted after the refined features to achieve final cross-modal fusion. Experiments on five benchmark datasets demonstrate the superiority of our depth-cooperated model against 12 state-of-the-art methods, and the necessity of depth is also validated.
Abstract:Camouflaged Object Detection (COD) aims to detect objects with similar patterns (e.g., texture, intensity, colour, etc) to their surroundings, and recently has attracted growing research interest. As camouflaged objects often present very ambiguous boundaries, how to determine object locations as well as their weak boundaries is challenging and also the key to this task. Inspired by the biological visual perception process when a human observer discovers camouflaged objects, this paper proposes a novel edge-based reversible re-calibration network called ERRNet. Our model is characterized by two innovative designs, namely Selective Edge Aggregation (SEA) and Reversible Re-calibration Unit (RRU), which aim to model the visual perception behaviour and achieve effective edge prior and cross-comparison between potential camouflaged regions and background. More importantly, RRU incorporates diverse priors with more comprehensive information comparing to existing COD models. Experimental results show that ERRNet outperforms existing cutting-edge baselines on three COD datasets and five medical image segmentation datasets. Especially, compared with the existing top-1 model SINet, ERRNet significantly improves the performance by $\sim$6% (mean E-measure) with notably high speed (79.3 FPS), showing that ERRNet could be a general and robust solution for the COD task.