Abstract:There is a growing necessity for edge training to adapt to dynamically changing environment. Neuromorphic computing represents a significant pathway for high-efficiency intelligent computation in energy-constrained edges, but existing neuromorphic architectures lack the ability of directly training spiking neural networks (SNNs) based on backpropagation. We develop a multi-core neuromorphic architecture with Feedforward-Propagation, Back-Propagation, and Weight-Gradient engines in each core, supporting high efficient parallel computing at both the engine and core levels. It combines various data flows and sparse computation optimization by fully leveraging the sparsity in SNN training, obtaining a high energy efficiency of 1.05TFLOPS/W@ FP16 @ 28nm, 55 ~ 85% reduction of DRAM access compared to A100 GPU in SNN trainings, and a 20-core deep SNN training and a 5-worker federated learning on FPGAs. Our study develops the first multi-core neuromorphic architecture supporting the direct SNN training, facilitating the neuromorphic computing in edge-learnable applications.
Abstract:Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts. However, these approaches typically require tens or even hundreds of iterative samplings, resulting in significant latency. Recently, techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation. Nonetheless, when aligning the knowledge of student and teacher models, these solutions either solely rely on pixel-level loss constraints or neglect the fact that diffusion models prioritize varying levels of information at different time steps. To accomplish effective and efficient image super-resolution, we propose a time-aware diffusion distillation method, named TAD-SR. Specifically, we introduce a novel score distillation strategy to align the data distribution between the outputs of the student and teacher models after minor noise perturbation. This distillation strategy enables the student network to concentrate more on the high-frequency details. Furthermore, to mitigate performance limitations stemming from distillation, we integrate a latent adversarial loss and devise a time-aware discriminator that leverages diffusion priors to effectively distinguish between real images and generated images. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method achieves comparable or even superior performance compared to both previous state-of-the-art (SOTA) methods and the teacher model in just one sampling step. Codes are available at https://github.com/LearningHx/TAD-SR.
Abstract:Image interpolation is a special case of image super-resolution, where the low-resolution image is directly down-sampled from its high-resolution counterpart without blurring and noise. Therefore, assumptions adopted in super-resolution models are not valid for image interpolation. To address this problem, we propose a novel image interpolation model based on sparse representation. Two widely used priors including sparsity and nonlocal self-similarity are used as the regularization terms to enhance the stability of interpolation model. Meanwhile, we incorporate the nonlocal linear regression into this model since nonlocal similar patches could provide a better approximation to a given patch. Moreover, we propose a new approach to learn adaptive sub-dictionary online instead of clustering. For each patch, similar patches are grouped to learn adaptive sub-dictionary, generating a more sparse and accurate representation. Finally, the weighted encoding is introduced to suppress tailing of fitting residuals in data fidelity. Abundant experimental results demonstrate that our proposed method outperforms several state-of-the-art methods in terms of quantitative measures and visual quality.
Abstract:Video captioning aims to automatically generate natural language descriptions of video content, which has drawn a lot of attention recent years. Generating accurate and fine-grained captions needs to not only understand the global content of video, but also capture the detailed object information. Meanwhile, video representations have great impact on the quality of generated captions. Thus, it is important for video captioning to capture salient objects with their detailed temporal dynamics, and represent them using discriminative spatio-temporal representations. In this paper, we propose a new video captioning approach based on object-aware aggregation with bidirectional temporal graph (OA-BTG), which captures detailed temporal dynamics for salient objects in video, and learns discriminative spatio-temporal representations by performing object-aware local feature aggregation on detected object regions. The main novelties and advantages are: (1) Bidirectional temporal graph: A bidirectional temporal graph is constructed along and reversely along the temporal order, which provides complementary ways to capture the temporal trajectories for each salient object. (2) Object-aware aggregation: Learnable VLAD (Vector of Locally Aggregated Descriptors) models are constructed on object temporal trajectories and global frame sequence, which performs object-aware aggregation to learn discriminative representations. A hierarchical attention mechanism is also developed to distinguish different contributions of multiple objects. Experiments on two widely-used datasets demonstrate our OA-BTG achieves state-of-the-art performance in terms of BLEU@4, METEOR and CIDEr metrics.
Abstract:Video classification is highly important with wide applications, such as video search and intelligent surveillance. Video naturally consists of static and motion information, which can be represented by frame and optical flow. Recently, researchers generally adopt the deep networks to capture the static and motion information \textbf{\emph{separately}}, which mainly has two limitations: (1) Ignoring the coexistence relationship between spatial and temporal attention, while they should be jointly modelled as the spatial and temporal evolutions of video, thus discriminative video features can be extracted.(2) Ignoring the strong complementarity between static and motion information coexisted in video, while they should be collaboratively learned to boost each other. For addressing the above two limitations, this paper proposes the approach of two-stream collaborative learning with spatial-temporal attention (TCLSTA), which consists of two models: (1) Spatial-temporal attention model: The spatial-level attention emphasizes the salient regions in frame, and the temporal-level attention exploits the discriminative frames in video. They are jointly learned and mutually boosted to learn the discriminative static and motion features for better classification performance. (2) Static-motion collaborative model: It not only achieves mutual guidance on static and motion information to boost the feature learning, but also adaptively learns the fusion weights of static and motion streams, so as to exploit the strong complementarity between static and motion information to promote video classification. Experiments on 4 widely-used datasets show that our TCLSTA approach achieves the best performance compared with more than 10 state-of-the-art methods.