Abstract:Text style transfer (TST) involves altering the linguistic style of a text while preserving its core content. This paper focuses on sentiment transfer, a vital TST subtask (Mukherjee et al., 2022a), across a spectrum of Indian languages: Hindi, Magahi, Malayalam, Marathi, Punjabi, Odia, Telugu, and Urdu, expanding upon previous work on English-Bangla sentiment transfer (Mukherjee et al., 2023). We introduce dedicated datasets of 1,000 positive and 1,000 negative style-parallel sentences for each of these eight languages. We then evaluate the performance of various benchmark models categorized into parallel, non-parallel, cross-lingual, and shared learning approaches, including the Llama2 and GPT-3.5 large language models (LLMs). Our experiments highlight the significance of parallel data in TST and demonstrate the effectiveness of the Masked Style Filling (MSF) approach (Mukherjee et al., 2023) in non-parallel techniques. Moreover, cross-lingual and joint multilingual learning methods show promise, offering insights into selecting optimal models tailored to the specific language and task requirements. To the best of our knowledge, this work represents the first comprehensive exploration of the TST task as sentiment transfer across a diverse set of languages.
Abstract:The present paper introduces new sentiment data, MaCMS, for Magahi-Hindi-English (MHE) code-mixed language, where Magahi is a less-resourced minority language. This dataset is the first Magahi-Hindi-English code-mixed dataset for sentiment analysis tasks. Further, we also provide a linguistics analysis of the dataset to understand the structure of code-mixing and a statistical study to understand the language preferences of speakers with different polarities. With these analyses, we also train baseline models to evaluate the dataset's quality.
Abstract:This paper focuses on text detoxification, i.e., automatically converting toxic text into non-toxic text. This task contributes to safer and more respectful online communication and can be considered a Text Style Transfer (TST) task, where the text style changes while its content is preserved. We present three approaches: knowledge transfer from a similar task, multi-task learning approach, combining sequence-to-sequence modeling with various toxicity classification tasks, and, delete and reconstruct approach. To support our research, we utilize a dataset provided by Dementieva et al.(2021), which contains multiple versions of detoxified texts corresponding to toxic texts. In our experiments, we selected the best variants through expert human annotators, creating a dataset where each toxic sentence is paired with a single, appropriate detoxified version. Additionally, we introduced a small Hindi parallel dataset, aligning with a part of the English dataset, suitable for evaluation purposes. Our results demonstrate that our approach effectively balances text detoxication while preserving the actual content and maintaining fluency.
Abstract:Exploiting cognates for transfer learning in under-resourced languages is an exciting opportunity for language understanding tasks, including unsupervised machine translation, named entity recognition and information retrieval. Previous approaches mainly focused on supervised cognate detection tasks based on orthographic, phonetic or state-of-the-art contextual language models, which under-perform for most under-resourced languages. This paper proposes a novel language-agnostic weakly-supervised deep cognate detection framework for under-resourced languages using morphological knowledge from closely related languages. We train an encoder to gain morphological knowledge of a language and transfer the knowledge to perform unsupervised and weakly-supervised cognate detection tasks with and without the pivot language for the closely-related languages. While unsupervised, it overcomes the need for hand-crafted annotation of cognates. We performed experiments on different published cognate detection datasets across language families and observed not only significant improvement over the state-of-the-art but also our method outperformed the state-of-the-art supervised and unsupervised methods. Our model can be extended to a wide range of languages from any language family as it overcomes the requirement of the annotation of the cognate pairs for training. The code and dataset building scripts can be found at https://github.com/koustavagoswami/Weakly_supervised-Cognate_Detection
Abstract:Personalized recommendations have a growing importance in direct marketing, which motivates research to enhance customer experiences by knowledge graph (KG) applications. For example, in financial services, companies may benefit from providing relevant financial articles to their customers to cultivate relationships, foster client engagement and promote informed financial decisions. While several approaches center on KG-based recommender systems for improved content, in this study we focus on interpretable KG-based recommender systems for decision making.To this end, we present two knowledge graph-based approaches for personalized article recommendations for a set of customers of a large multinational financial services company. The first approach employs Reinforcement Learning and the second approach uses the XGBoost algorithm for recommending articles to the customers. Both approaches make use of a KG generated from both structured (tabular data) and unstructured data (a large body of text data).Using the Reinforcement Learning-based recommender system we could leverage the graph traversal path leading to the recommendation as a way to generate interpretations (Path Directed Reasoning (PDR)). In the XGBoost-based approach, one can also provide explainable results using post-hoc methods such as SHAP (SHapley Additive exPlanations) and ELI5 (Explain Like I am Five).Importantly, our approach offers explainable results, promoting better decision-making. This study underscores the potential of combining advanced machine learning techniques with KG-driven insights to bolster experience in customer relationship management.
Abstract:We present the results of the Dravidian-CodeMix shared task held at FIRE 2021, a track on sentiment analysis for Dravidian Languages in Code-Mixed Text. We describe the task, its organization, and the submitted systems. This shared task is the continuation of last year's Dravidian-CodeMix shared task held at FIRE 2020. This year's tasks included code-mixing at the intra-token and inter-token levels. Additionally, apart from Tamil and Malayalam, Kannada was also introduced. We received 22 systems for Tamil-English, 15 systems for Malayalam-English, and 15 for Kannada-English. The top system for Tamil-English, Malayalam-English and Kannada-English scored weighted average F1-score of 0.711, 0.804, and 0.630, respectively. In summary, the quality and quantity of the submission show that there is great interest in Dravidian languages in code-mixed setting and state of the art in this domain still needs more improvement.
Abstract:This paper describes the development of a multilingual, manually annotated dataset for three under-resourced Dravidian languages generated from social media comments. The dataset was annotated for sentiment analysis and offensive language identification for a total of more than 60,000 YouTube comments. The dataset consists of around 44,000 comments in Tamil-English, around 7,000 comments in Kannada-English, and around 20,000 comments in Malayalam-English. The data was manually annotated by volunteer annotators and has a high inter-annotator agreement in Krippendorff's alpha. The dataset contains all types of code-mixing phenomena since it comprises user-generated content from a multilingual country. We also present baseline experiments to establish benchmarks on the dataset using machine learning methods. The dataset is available on Github (https://github.com/bharathichezhiyan/DravidianCodeMix-Dataset) and Zenodo (https://zenodo.org/record/4750858\#.YJtw0SYo\_0M).
Abstract:Human communication is inherently multimodal and asynchronous. Analyzing human emotions and sentiment is an emerging field of artificial intelligence. We are witnessing an increasing amount of multimodal content in local languages on social media about products and other topics. However, there are not many multimodal resources available for under-resourced Dravidian languages. Our study aims to create a multimodal sentiment analysis dataset for the under-resourced Tamil and Malayalam languages. First, we downloaded product or movies review videos from YouTube for Tamil and Malayalam. Next, we created captions for the videos with the help of annotators. Then we labelled the videos for sentiment, and verified the inter-annotator agreement using Fleiss's Kappa. This is the first multimodal sentiment analysis dataset for Tamil and Malayalam by volunteer annotators.
Abstract:Identifying metaphors in text is very challenging and requires comprehending the underlying comparison. The automation of this cognitive process has gained wide attention lately. However, the majority of existing approaches concentrate on word-level identification by treating the task as either single-word classification or sequential labelling without explicitly modelling the interaction between the metaphor components. On the other hand, while existing relation-level approaches implicitly model this interaction, they ignore the context where the metaphor occurs. In this work, we address these limitations by introducing a novel architecture for identifying relation-level metaphoric expressions of certain grammatical relations based on contextual modulation. In a methodology inspired by works in visual reasoning, our approach is based on conditioning the neural network computation on the deep contextualised features of the candidate expressions using feature-wise linear modulation. We demonstrate that the proposed architecture achieves state-of-the-art results on benchmark datasets. The proposed methodology is generic and could be applied to other textual classification problems that benefit from contextual interaction.
Abstract:Machine translation is one of the applications of natural language processing which has been explored in different languages. Recently researchers started paying attention towards machine translation for resource-poor languages and closely related languages. A widespread and underlying problem for these machine translation systems is the variation in orthographic conventions which causes many issues to traditional approaches. Two languages written in two different orthographies are not easily comparable, but orthographic information can also be used to improve the machine translation system. This article offers a survey of research regarding orthography's influence on machine translation of under-resourced languages. It introduces under-resourced languages in terms of machine translation and how orthographic information can be utilised to improve machine translation. We describe previous work in this area, discussing what underlying assumptions were made, and showing how orthographic knowledge improves the performance of machine translation of under-resourced languages. We discuss different types of machine translation and demonstrate a recent trend that seeks to link orthographic information with well-established machine translation methods. Considerable attention is given to current efforts of cognates information at different levels of machine translation and the lessons that can be drawn from this. Additionally, multilingual neural machine translation of closely related languages is given a particular focus in this survey. This article ends with a discussion of the way forward in machine translation with orthographic information, focusing on multilingual settings and bilingual lexicon induction.