Abstract:In contrast to conventional pipeline Spoken Language Understanding (SLU) which consists of automatic speech recognition (ASR) and natural language understanding (NLU), end-to-end SLU infers the semantic meaning directly from speech and overcomes the error propagation caused by ASR. End-to-end slot filling (SF) from speech is an essential component of end-to-end SLU, and is usually regarded as a sequence-to-sequence generation problem, heavily relied on the performance of language model of ASR. However, it is hard to generate a correct slot when the slot is out-of-vovabulary (OOV) in training data, especially when a slot is an anti-linguistic entity without grammatical rule. Inspired by object detection in computer vision that is to detect the object from an image, we consider SF as the task of slot detection from speech. In this paper, we formulate the SF task as a matching task and propose an end-to-end knowledge-based SF model, named Speech-to-Slot (Speech2Slot), to leverage knowledge to detect the boundary of a slot from the speech. We also release a large-scale dataset of Chinese speech for slot filling, containing more than 830,000 samples. The experiments show that our approach is markedly superior to the conventional pipeline SLU approach, and outperforms the state-of-the-art end-to-end SF approach with 12.51% accuracy improvement.
Abstract:End-to-end Spoken Language Understanding (SLU) is proposed to infer the semantic meaning directly from audio features without intermediate text representation. Although the acoustic model component of an end-to-end SLU system can be pre-trained with Automatic Speech Recognition (ASR) targets, the SLU component can only learn semantic features from limited task-specific training data. In this paper, for the first time we propose to do large-scale unsupervised pre-training for the SLU component of an end-to-end SLU system, so that the SLU component may preserve semantic features from massive unlabeled audio data. As the output of the acoustic model component, i.e. phoneme posterior sequences, has much different characteristic from text sequences, we propose a novel pre-training model called BERT-PLM, which stands for Bidirectional Encoder Representations from Transformers through Permutation Language Modeling. BERT-PLM trains the SLU component on unlabeled data through a regression objective equivalent to the partial permutation language modeling objective, while leverages full bi-directional context information with BERT networks. The experiment results show that our approach out-perform the state-of-the-art end-to-end systems with over 12.5% error reduction.