Abstract:Haptic feedback to the surgeon during robotic surgery would enable safer and more immersive surgeries but estimating tissue interaction forces at the tips of robotically controlled surgical instruments has proven challenging. Few existing surgical robots can measure interaction forces directly and the additional sensor may limit the life of instruments. We present a hybrid model and learning-based framework for force estimation for the Patient Side Manipulators (PSM) of a da Vinci Research Kit (dVRK). The model-based component identifies the dynamic parameters of the robot and estimates free-space joint torque, while the learning-based component compensates for environmental factors, such as the additional torque caused by trocar interaction between the PSM instrument and the patient's body wall. We evaluate our method in an abdominal phantom and achieve an error in force estimation of under 10% normalized root-mean-squared error. We show that by using a model-based method to perform dynamics identification, we reduce reliance on the training data covering the entire workspace. Although originally developed for the dVRK, the proposed method is a generalizable framework for other compliant surgical robots. The code is available at https://github.com/vu-maple-lab/dvrk_force_estimation.
Abstract:In this study, we further investigate the robustness and generalization ability of an neural network (NN) based force estimation method, using the da Vinci Research Kit Si (dVRK-Si). To evaluate our method's performance, we compare the force estimation accuracy with several baseline methods. We conduct comparative studies between the dVRK classic and dVRK-Si systems to benchmark the effectiveness of these approaches. We conclude that the NN-based method provides comparable force estimation accuracy across the two systems, as the average root mean square error (RMSE) over the average range of force ratio is approximately 3.07% for the dVRK classic, and 5.27% for the dVRK-Si. On the dVRK-Si, the force estimation RMSEs for all the baseline methods are 2 to 4 times larger than the NN-based method in all directions. One possible reason is, we made assumptions in the baseline methods that static forces remain the same or dynamics is time-invariant. These assumptions may hold for the dVRK Classic, as it has pre-loaded weight and maintains horizontal self balance. Since the dVRK-Si configuration does not have this property, assumptions do not hold anymore, therefore the NN-based method significantly outperforms.
Abstract:Style transfer is a promising approach to close the sim-to-real gap in medical endoscopy. Rendering realistic endoscopic videos by traversing pre-operative scans (such as MRI or CT) can generate realistic simulations as well as ground truth camera poses and depth maps. Although image-to-image (I2I) translation models such as CycleGAN perform well, they are unsuitable for video-to-video synthesis due to the lack of temporal consistency, resulting in artifacts between frames. We propose MeshBrush, a neural mesh stylization method to synthesize temporally consistent videos with differentiable rendering. MeshBrush uses the underlying geometry of patient imaging data while leveraging existing I2I methods. With learned per-vertex textures, the stylized mesh guarantees consistency while producing high-fidelity outputs. We demonstrate that mesh stylization is a promising approach for creating realistic simulations for downstream tasks such as training and preoperative planning. Although our method is tested and designed for ureteroscopy, its components are transferable to general endoscopic and laparoscopic procedures.
Abstract:Purpose: Surgical video is an important data stream for gesture recognition. Thus, robust visual encoders for those data-streams is similarly important. Methods: Leveraging the Bridge-Prompt framework, we fine-tune a pre-trained vision-text model (CLIP) for gesture recognition in surgical videos. This can utilize extensive outside video data such as text, but also make use of label meta-data and weakly supervised contrastive losses. Results: Our experiments show that prompt-based video encoder outperforms standard encoders in surgical gesture recognition tasks. Notably, it displays strong performance in zero-shot scenarios, where gestures/tasks that were not provided during the encoder training phase are included in the prediction phase. Additionally, we measure the benefit of inclusion text descriptions in the feature extractor training schema. Conclusion: Bridge-Prompt and similar pre-trained+fine-tuned video encoder models present significant visual representation for surgical robotics, especially in gesture recognition tasks. Given the diverse range of surgical tasks (gestures), the ability of these models to zero-shot transfer without the need for any task (gesture) specific retraining makes them invaluable.
Abstract:Monocular depth estimation (MDE) is a critical component of many medical tracking and mapping algorithms, particularly from endoscopic or laparoscopic video. However, because ground truth depth maps cannot be acquired from real patient data, supervised learning is not a viable approach to predict depth maps for medical scenes. Although self-supervised learning for MDE has recently gained attention, the outputs are difficult to evaluate reliably and each MDE's generalizability to other patients and anatomies is limited. This work evaluates the zero-shot performance of the newly released Depth Anything Model on medical endoscopic and laparoscopic scenes. We compare the accuracy and inference speeds of Depth Anything with other MDE models trained on general scenes as well as in-domain models trained on endoscopic data. Our findings show that although the zero-shot capability of Depth Anything is quite impressive, it is not necessarily better than other models in both speed and performance. We hope that this study can spark further research in employing foundation models for MDE in medical scenes.
Abstract:Purpose: Metrics derived from eye-gaze-tracking and pupillometry show promise for cognitive load assessment, potentially enhancing training and patient safety through user-specific feedback in tele-robotic surgery. However, current eye-tracking solutions' effectiveness in tele-robotic surgery is uncertain compared to everyday situations due to close-range interactions causing extreme pupil angles and occlusions. To assess the effectiveness of modern eye-gaze-tracking solutions in tele-robotic surgery, we compare the Tobii Pro 3 Glasses and Pupil Labs Core, evaluating their pupil diameter and gaze stability when integrated with the da Vinci Research Kit (dVRK). Methods: The study protocol includes a nine-point gaze calibration followed by pick-and-place task using the dVRK and is repeated three times. After a final calibration, users view a 3x3 grid of AprilTags, focusing on each marker for 10 seconds, to evaluate gaze stability across dVRK-screen positions with the L2-norm. Different gaze calibrations assess calibration's temporal deterioration due to head movements. Pupil diameter stability is evaluated using the FFT from the pupil diameter during the pick-and-place tasks. Users perform this routine with both head-worn eye-tracking systems. Results: Data collected from ten users indicate comparable pupil diameter stability. FFTs of pupil diameters show similar amplitudes in high-frequency components. Tobii Glasses show more temporal gaze stability compared to Pupil Labs, though both eye trackers yield a similar 4cm error in gaze estimation without an outdated calibration. Conclusion: Both eye trackers demonstrate similar stability of the pupil diameter and gaze, when the calibration is not outdated, indicating comparable eye-tracking and pupillometry performance in tele-robotic surgery settings.
Abstract:The ability to automatically detect and track surgical instruments in endoscopic videos can enable transformational interventions. Assessing surgical performance and efficiency, identifying skilled tool use and choreography, and planning operational and logistical aspects of OR resources are just a few of the applications that could benefit. Unfortunately, obtaining the annotations needed to train machine learning models to identify and localize surgical tools is a difficult task. Annotating bounding boxes frame-by-frame is tedious and time-consuming, yet large amounts of data with a wide variety of surgical tools and surgeries must be captured for robust training. Moreover, ongoing annotator training is needed to stay up to date with surgical instrument innovation. In robotic-assisted surgery, however, potentially informative data like timestamps of instrument installation and removal can be programmatically harvested. The ability to rely on tool installation data alone would significantly reduce the workload to train robust tool-tracking models. With this motivation in mind we invited the surgical data science community to participate in the challenge, SurgToolLoc 2022. The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools and localize them in video frames with bounding boxes. We present the results of this challenge along with many of the team's efforts. We conclude by discussing these results in the broader context of machine learning and surgical data science. The training data used for this challenge consisting of 24,695 video clips with tool presence labels is also being released publicly and can be accessed at https://console.cloud.google.com/storage/browser/isi-surgtoolloc-2022.
Abstract:Purpose: Vision-based robot tool segmentation plays a fundamental role in surgical robots and downstream tasks. CaRTS, based on a complementary causal model, has shown promising performance in unseen counterfactual surgical environments in the presence of smoke, blood, etc. However, CaRTS requires over 30 iterations of optimization to converge for a single image due to limited observability. Method: To address the above limitations, we take temporal relation into consideration and propose a temporal causal model for robot tool segmentation on video sequences. We design an architecture named Temporally Constrained CaRTS (TC-CaRTS). TC-CaRTS has three novel modules to complement CaRTS - temporal optimization pipeline, kinematics correction network, and spatial-temporal regularization. Results: Experiment results show that TC-CaRTS requires much fewer iterations to achieve the same or better performance as CaRTS. TC- CaRTS also has the same or better performance in different domains compared to CaRTS. All three modules are proven to be effective. Conclusion: We propose TC-CaRTS, which takes advantage of temporal constraints as additional observability. We show that TC-CaRTS outperforms prior work in the robot tool segmentation task with improved convergence speed on test datasets from different domains.
Abstract:Vision-based segmentation of the robotic tool during robot-assisted surgery enables downstream applications, such as augmented reality feedback, while allowing for inaccuracies in robot kinematics. With the introduction of deep learning, many methods were presented to solve instrument segmentation directly and solely from images. While these approaches made remarkable progress on benchmark datasets, fundamental challenges pertaining to their robustness remain. We present CaRTS, a causality-driven robot tool segmentation algorithm, that is designed based on a complementary causal model of the robot tool segmentation task. Rather than directly inferring segmentation masks from observed images, CaRTS iteratively aligns tool models with image observations by updating the initially incorrect robot kinematic parameters through forward kinematics and differentiable rendering to optimize image feature similarity end-to-end. We benchmark CaRTS with competing techniques on both synthetic as well as real data from the dVRK, generated in precisely controlled scenarios to allow for counterfactual synthesis. On training-domain test data, CaRTS achieves a Dice score of 93.4 that is preserved well (Dice score of 91.8) when tested on counterfactual altered test data, exhibiting low brightness, smoke, blood, and altered background patterns. This compares favorably to Dice scores of 95.0 and 62.8, respectively, of a purely image-based method trained and tested on the same data. Future work will involve accelerating CaRTS to achieve video framerate and estimating the impact occlusion has in practice. Despite these limitations, our results are promising: In addition to achieving high segmentation accuracy, CaRTS provides estimates of the true robot kinematics, which may benefit applications such as force estimation.
Abstract:Pelvic ring disruptions result from blunt injury mechanisms and are often found in patients with multi-system trauma. To grade pelvic fracture severity in trauma victims based on whole-body CT, the Tile AO/OTA classification is frequently used. Due to the high volume of whole-body trauma CTs generated in busy trauma centers, an automated approach to Tile classification would provide substantial value, e.,g., to prioritize the reading queue of the attending trauma radiologist. In such scenario, an automated method should perform grading based on a transparent process and based on interpretable features to enable interaction with human readers and lower their workload by offering insights from a first automated read of the scan. This paper introduces an automated yet interpretable pelvic trauma decision support system to assist radiologists in fracture detection and Tile grade classification. The method operates similarly to human interpretation of CT scans and first detects distinct pelvic fractures on CT with high specificity using a Faster-RCNN model that are then interpreted using a structural causal model based on clinical best practices to infer an initial Tile grade. The Bayesian causal model and finally, the object detector are then queried for likely co-occurring fractures that may have been rejected initially due to the highly specific operating point of the detector, resulting in an updated list of detected fractures and corresponding final Tile grade. Our method is transparent in that it provides finding location and type using the object detector, as well as information on important counterfactuals that would invalidate the system's recommendation and achieves an AUC of 83.3%/85.1% for translational/rotational instability. Despite being designed for human-machine teaming, our approach does not compromise on performance compared to previous black-box approaches.