Abstract:While diffusion-based image restoration (IR) methods have achieved remarkable success, they are still limited by the low inference speed attributed to the necessity of executing hundreds or even thousands of sampling steps. Existing acceleration sampling techniques, though seeking to expedite the process, inevitably sacrifice performance to some extent, resulting in over-blurry restored outcomes. To address this issue, this study proposes a novel and efficient diffusion model for IR that significantly reduces the required number of diffusion steps. Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration. Specifically, our proposed method establishes a Markov chain that facilitates the transitions between the high-quality and low-quality images by shifting their residuals, substantially improving the transition efficiency. A carefully formulated noise schedule is devised to flexibly control the shifting speed and the noise strength during the diffusion process. Extensive experimental evaluations demonstrate that the proposed method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks, namely image super-resolution, image inpainting, and blind face restoration, \textit{\textbf{even only with four sampling steps}}. Our code and model are publicly available at \url{https://github.com/zsyOAOA/ResShift}.
Abstract:Text-based diffusion models have exhibited remarkable success in generation and editing, showing great promise for enhancing visual content with their generative prior. However, applying these models to video super-resolution remains challenging due to the high demands for output fidelity and temporal consistency, which is complicated by the inherent randomness in diffusion models. Our study introduces Upscale-A-Video, a text-guided latent diffusion framework for video upscaling. This framework ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences; globally, without training, a flow-guided recurrent latent propagation module is introduced to enhance overall video stability by propagating and fusing latent across the entire sequences. Thanks to the diffusion paradigm, our model also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation, enabling a trade-off between fidelity and quality. Extensive experiments show that Upscale-A-Video surpasses existing methods in both synthetic and real-world benchmarks, as well as in AI-generated videos, showcasing impressive visual realism and temporal consistency.
Abstract:Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed due to the requirements of hundreds or even thousands of sampling steps. Existing acceleration sampling techniques inevitably sacrifice performance to some extent, leading to over-blurry SR results. To address this issue, we propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps, thereby eliminating the need for post-acceleration during inference and its associated performance deterioration. Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual between them, substantially improving the transition efficiency. Additionally, an elaborate noise schedule is developed to flexibly control the shifting speed and the noise strength during the diffusion process. Extensive experiments demonstrate that the proposed method obtains superior or at least comparable performance to current state-of-the-art methods on both synthetic and real-world datasets, even only with 15 sampling steps. Our code and model are available at https://github.com/zsyOAOA/ResShift.
Abstract:We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution (SR). Specifically, by employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model, thereby preserving the generative prior and minimizing training cost. To remedy the loss of fidelity caused by the inherent stochasticity of diffusion models, we introduce a controllable feature wrapping module that allows users to balance quality and fidelity by simply adjusting a scalar value during the inference process. Moreover, we develop a progressive aggregation sampling strategy to overcome the fixed-size constraints of pre-trained diffusion models, enabling adaptation to resolutions of any size. A comprehensive evaluation of our method using both synthetic and real-world benchmarks demonstrates its superiority over current state-of-the-art approaches.
Abstract:Measuring the perception of visual content is a long-standing problem in computer vision. Many mathematical models have been developed to evaluate the look or quality of an image. Despite the effectiveness of such tools in quantifying degradations such as noise and blurriness levels, such quantification is loosely coupled with human language. When it comes to more abstract perception about the feel of visual content, existing methods can only rely on supervised models that are explicitly trained with labeled data collected via laborious user study. In this paper, we go beyond the conventional paradigms by exploring the rich visual language prior encapsulated in Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner. In particular, we discuss effective prompt designs and show an effective prompt pairing strategy to harness the prior. We also provide extensive experiments on controlled datasets and Image Quality Assessment (IQA) benchmarks. Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments. Code will be avaliable at https://github.com/IceClear/CLIP-IQA.
Abstract:When analyzing human motion videos, the output jitters from existing pose estimators are highly-unbalanced. Most frames only suffer from slight jitters, while significant jitters occur in those frames with occlusion or poor image quality. Such complex poses often persist in videos, leading to consecutive frames with poor estimation results and large jitters. Existing pose smoothing solutions based on temporal convolutional networks, recurrent neural networks, or low-pass filters cannot deal with such a long-term jitter problem without considering the significant and persistent errors within the jittering video segment. Motivated by the above observation, we propose a novel plug-and-play refinement network, namely SMOOTHNET, which can be attached to any existing pose estimators to improve its temporal smoothness and enhance its per-frame precision simultaneously. Especially, SMOOTHNET is a simple yet effective data-driven fully-connected network with large receptive fields, effectively mitigating the impact of long-term jitters with unreliable estimation results. We conduct extensive experiments on twelve backbone networks with seven datasets across 2D and 3D pose estimation, body recovery, and downstream tasks. Our results demonstrate that the proposed SMOOTHNET consistently outperforms existing solutions, especially on those clips with high errors and long-term jitters.
Abstract:The past few years have witnessed fast development in video quality enhancement via deep learning. Existing methods mainly focus on enhancing the objective quality of compressed video while ignoring its perceptual quality. In this paper, we focus on enhancing the perceptual quality of compressed video. Our main observation is that enhancing the perceptual quality mostly relies on recovering high-frequency sub-bands in wavelet domain. Accordingly, we propose a novel generative adversarial network (GAN) based on multi-level wavelet packet transform (WPT) to enhance the perceptual quality of compressed video, which is called multi-level wavelet-based GAN (MW-GAN). In MW-GAN, we first apply motion compensation with a pyramid architecture to obtain temporal information. Then, we propose a wavelet reconstruction network with wavelet-dense residual blocks (WDRB) to recover the high-frequency details. In addition, the adversarial loss of MW-GAN is added via WPT to further encourage high-frequency details recovery for video frames. Experimental results demonstrate the superiority of our method.
Abstract:Learning agents that are not only capable of taking tests but are also innovating are becoming a hot topic in artificial intelligence (AI). One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, the existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logic and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided games set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard.
Abstract:Intrinsic rewards are introduced to simulate how human intelligence works; they are usually evaluated by intrinsically-motivated play, i.e., playing games without extrinsic rewards but evaluated with extrinsic rewards. However, none of the existing intrinsic reward approaches can achieve human-level performance under this very challenging setting of intrinsically-motivated play. In this work, we propose a novel megalomania-driven intrinsic reward (called \emph{mega-reward}), which, to our knowledge, is the first approach that achieves human-level performance in intrinsically-motivated play. Intuitively, mega-reward comes from the observation that infants' intelligence develops when they try to gain more control on entities in an environment; therefore, mega-reward aims to maximize the control capabilities of agents on given entities in a given environment. To formalize mega-reward, a relational transition model is proposed to bridge the gaps between direct and latent control. Experimental studies show that mega-reward can (i) greatly outperform all state-of-the-art intrinsic reward approaches, (ii) generally achieves the same level of performance as Ex-PPO and professional human-level scores; and (iii) has also superior performance when it is incorporated with extrinsic reward.
Abstract:Hierarchical reinforcement learning (HRL) has recently shown promising advances on speeding up learning, improving the exploration, and discovering intertask transferable skills. Most recent works focus on HRL with two levels, i.e., a master policy manipulates subpolicies, which in turn manipulate primitive actions. However, HRL with multiple levels is usually needed in many real-world scenarios, whose ultimate goals are highly abstract, while their actions are very primitive. Therefore, in this paper, we propose a diversity-driven extensible HRL (DEHRL), where an extensible and scalable framework is built and learned levelwise to realize HRL with multiple levels. DEHRL follows a popular assumption: diverse subpolicies are useful, i.e., subpolicies are believed to be more useful if they are more diverse. However, existing implementations of this diversity assumption usually have their own drawbacks, which makes them inapplicable to HRL with multiple levels. Consequently, we further propose a novel diversity-driven solution to achieve this assumption in DEHRL. Experimental studies evaluate DEHRL with five baselines from four perspectives in two domains; the results show that DEHRL outperforms the state-of-the-art baselines in all four aspects.