Abstract:Boundary based blackbox attack has been recognized as practical and effective, given that an attacker only needs to access the final model prediction. However, the query efficiency of it is in general high especially for high dimensional image data. In this paper, we show that such efficiency highly depends on the scale at which the attack is applied, and attacking at the optimal scale significantly improves the efficiency. In particular, we propose a theoretical framework to analyze and show three key characteristics to improve the query efficiency. We prove that there exists an optimal scale for projective gradient estimation. Our framework also explains the satisfactory performance achieved by existing boundary black-box attacks. Based on our theoretical framework, we propose Progressive-Scale enabled projective Boundary Attack (PSBA) to improve the query efficiency via progressive scaling techniques. In particular, we employ Progressive-GAN to optimize the scale of projections, which we call PSBA-PGAN. We evaluate our approach on both spatial and frequency scales. Extensive experiments on MNIST, CIFAR-10, CelebA, and ImageNet against different models including a real-world face recognition API show that PSBA-PGAN significantly outperforms existing baseline attacks in terms of query efficiency and attack success rate. We also observe relatively stable optimal scales for different models and datasets. The code is publicly available at https://github.com/AI-secure/PSBA.
Abstract:Gradient estimation and vector space projection have been studied as two distinct topics. We aim to bridge the gap between the two by investigating how to efficiently estimate gradient based on a projected low-dimensional space. We first provide lower and upper bounds for gradient estimation under both linear and nonlinear projections, and outline checkable sufficient conditions under which one is better than the other. Moreover, we analyze the query complexity for the projection-based gradient estimation and present a sufficient condition for query-efficient estimators. Built upon our theoretic analysis, we propose a novel query-efficient Nonlinear Gradient Projection-based Boundary Blackbox Attack (NonLinear-BA). We conduct extensive experiments on four image datasets: ImageNet, CelebA, CIFAR-10, and MNIST, and show the superiority of the proposed methods compared with the state-of-the-art baselines. In particular, we show that the projection-based boundary blackbox attacks are able to achieve much smaller magnitude of perturbations with 100% attack success rate based on efficient queries. Both linear and nonlinear projections demonstrate their advantages under different conditions. We also evaluate NonLinear-BA against the commercial online API MEGVII Face++, and demonstrate the high blackbox attack performance both quantitatively and qualitatively. The code is publicly available at https://github.com/AI-secure/NonLinear-BA.
Abstract:Modern self-driving perception systems have been shown to improve upon processing complementary inputs such as LiDAR with images. In isolation, 2D images have been found to be extremely vulnerable to adversarial attacks. Yet, there have been limited studies on the adversarial robustness of multi-modal models that fuse LiDAR features with image features. Furthermore, existing works do not consider physically realizable perturbations that are consistent across the input modalities. In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle. We focus on physically realizable and input-agnostic attacks as they are feasible to execute in practice, and show that a single universal adversary can hide different host vehicles from state-of-the-art multi-modal detectors. Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features. Furthermore, we find that in modern sensor fusion methods which project image features into 3D, adversarial attacks can exploit the projection process to generate false positives across distant regions in 3D. Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly. However, we find that standard adversarial defenses still struggle to prevent false positives which are also caused by inaccurate associations between 3D LiDAR points and 2D pixels.
Abstract:Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great concerns. Such adversarial attacks can be achieved by adding a small magnitude of perturbation to the input to mislead model prediction. While several whitebox attacks have demonstrated their effectiveness, which assume that the attackers have full access to the machine learning models; blackbox attacks are more realistic in practice. In this paper, we propose a Query-Efficient Boundary-based blackbox Attack (QEBA) based only on model's final prediction labels. We theoretically show why previous boundary-based attack with gradient estimation on the whole gradient space is not efficient in terms of query numbers, and provide optimality analysis for our dimension reduction-based gradient estimation. On the other hand, we conducted extensive experiments on ImageNet and CelebA datasets to evaluate QEBA. We show that compared with the state-of-the-art blackbox attacks, QEBA is able to use a smaller number of queries to achieve a lower magnitude of perturbation with 100% attack success rate. We also show case studies of attacks on real-world APIs including MEGVII Face++ and Microsoft Azure.
Abstract:Machine learning models, especially neural networks (NNs), have achieved outstanding performance on diverse and complex applications. However, recent work has found that they are vulnerable to Trojan attacks where an adversary trains a corrupted model with poisoned data or directly manipulates its parameters in a stealthy way. Such Trojaned models can obtain good performance on normal data during test time while predicting incorrectly on the adversarially manipulated data samples. This paper aims to develop ways to detect Trojaned models. We mainly explore the idea of meta neural analysis, a technique involving training a meta NN model that can be used to predict whether or not a target NN model has certain properties. We develop a novel pipeline Meta Neural Trojaned model Detection (MNTD) system to predict if a given NN is Trojaned via meta neural analysis on a set of trained shadow models. We propose two ways to train the meta-classifier without knowing the Trojan attacker's strategies. The first one, one-class learning, will fit a novel detection meta-classifier using only benign neural networks. The second one, called jumbo learning, will approximate a general distribution of Trojaned models and sample a "jumbo" set of Trojaned models to train the meta-classifier and evaluate on the unseen Trojan strategies. Extensive experiments demonstrate the effectiveness of MNTD in detecting different Trojan attacks in diverse areas such as vision, speech, tabular data, and natural language processing. We show that MNTD reaches an average of 97% detection AUC (Area Under the ROC Curve) score and outperforms existing approaches. Furthermore, we design and evaluate MNTD system to defend against strong adaptive attackers who have exactly the knowledge of the detection, which demonstrates the robustness of MNTD.
Abstract:Unsupervised node embedding methods (e.g., DeepWalk, LINE, and node2vec) have attracted growing interests given their simplicity and effectiveness. However, although these methods have been proved effective in a variety of applications, none of the existing work has analyzed the robustness of them. This could be very risky if these methods are attacked by an adversarial party. In this paper, we take the task of link prediction as an example, which is one of the most fundamental problems for graph analysis, and introduce a data positioning attack to node embedding methods. We give a complete characterization of attacker's utilities and present efficient solutions to adversarial attacks for two popular node embedding methods: DeepWalk and LINE. We evaluate our proposed attack model on multiple real-world graphs. Experimental results show that our proposed model can significantly affect the results of link prediction by slightly changing the graph structures (e.g., adding or removing a few edges). We also show that our proposed model is very general and can be transferable across different embedding methods. Finally, we conduct a case study on a coauthor network to better understand our attack method.