Abstract:Topological correctness is critical for segmentation of tubular structures. Existing topological segmentation loss functions are primarily based on the persistent homology of the image. They match the persistent features from the segmentation with the persistent features from the ground truth and minimize the difference between them. However, these methods suffer from an ambiguous matching problem since the matching only relies on the information in the topological space. In this work, we propose an effective and efficient Spatial-Aware Topological Loss Function that further leverages the information in the original spatial domain of the image to assist the matching of persistent features. Extensive experiments on images of various types of tubular structures show that the proposed method has superior performance in improving the topological accuracy of the segmentation compared with state-of-the-art methods.
Abstract:With the recent rise of Large Language Models (LLMs), Vision-Language Models (VLMs), and other general foundation models, there is growing potential for multimodal, multi-task embodied agents that can operate in diverse environments given only natural language as input. One such application area is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the spatial reasoning and semantic understanding required, particularly in arbitrary scenes that may contain many objects belonging to fine-grained classes. To address this challenge, we curate the largest real-world dataset for Vision and Language-guided Action in 3D Scenes (VLA-3D), consisting of over 11.5K scanned 3D indoor rooms from existing datasets, 23.5M heuristically generated semantic relations between objects, and 9.7M synthetically generated referential statements. Our dataset consists of processed 3D point clouds, semantic object and room annotations, scene graphs, navigable free space annotations, and referential language statements that specifically focus on view-independent spatial relations for disambiguating objects. The goal of these features is to aid the downstream task of navigation, especially on real-world systems where some level of robustness must be guaranteed in an open world of changing scenes and imperfect language. We benchmark our dataset with current state-of-the-art models to obtain a performance baseline. All code to generate and visualize the dataset is publicly released, see https://github.com/HaochenZ11/VLA-3D. With the release of this dataset, we hope to provide a resource for progress in semantic 3D scene understanding that is robust to changes and one which will aid the development of interactive indoor navigation systems.
Abstract:Lifelong reinforcement learning (RL) has been developed as a paradigm for extending single-task RL to more realistic, dynamic settings. In lifelong RL, the "life" of an RL agent is modeled as a stream of tasks drawn from a task distribution. We propose EPIC (\underline{E}mpirical \underline{P}AC-Bayes that \underline{I}mproves \underline{C}ontinuously), a novel algorithm designed for lifelong RL using PAC-Bayes theory. EPIC learns a shared policy distribution, referred to as the \textit{world policy}, which enables rapid adaptation to new tasks while retaining valuable knowledge from previous experiences. Our theoretical analysis establishes a relationship between the algorithm's generalization performance and the number of prior tasks preserved in memory. We also derive the sample complexity of EPIC in terms of RL regret. Extensive experiments on a variety of environments demonstrate that EPIC significantly outperforms existing methods in lifelong RL, offering both theoretical guarantees and practical efficacy through the use of the world policy.
Abstract:We study the gap-dependent bounds of two important algorithms for on-policy Q-learning for finite-horizon episodic tabular Markov Decision Processes (MDPs): UCB-Advantage (Zhang et al. 2020) and Q-EarlySettled-Advantage (Li et al. 2021). UCB-Advantage and Q-EarlySettled-Advantage improve upon the results based on Hoeffding-type bonuses and achieve the almost optimal $\sqrt{T}$-type regret bound in the worst-case scenario, where $T$ is the total number of steps. However, the benign structures of the MDPs such as a strictly positive suboptimality gap can significantly improve the regret. While gap-dependent regret bounds have been obtained for Q-learning with Hoeffding-type bonuses, it remains an open question to establish gap-dependent regret bounds for Q-learning using variance estimators in their bonuses and reference-advantage decomposition for variance reduction. We develop a novel error decomposition framework to prove gap-dependent regret bounds of UCB-Advantage and Q-EarlySettled-Advantage that are logarithmic in $T$ and improve upon existing ones for Q-learning algorithms. Moreover, we establish the gap-dependent bound for the policy switching cost of UCB-Advantage and improve that under the worst-case MDPs. To our knowledge, this paper presents the first gap-dependent regret analysis for Q-learning using variance estimators and reference-advantage decomposition and also provides the first gap-dependent analysis on policy switching cost for Q-learning.
Abstract:In this paper, we consider model-free federated reinforcement learning for tabular episodic Markov decision processes. Under the coordination of a central server, multiple agents collaboratively explore the environment and learn an optimal policy without sharing their raw data. Despite recent advances in federated Q-learning algorithms achieving near-linear regret speedup with low communication cost, existing algorithms only attain suboptimal regrets compared to the information bound. We propose a novel model-free federated Q-learning algorithm, termed FedQ-Advantage. Our algorithm leverages reference-advantage decomposition for variance reduction and operates under two distinct mechanisms: synchronization between the agents and the server, and policy update, both triggered by events. We prove that our algorithm not only requires a lower logarithmic communication cost but also achieves an almost optimal regret, reaching the information bound up to a logarithmic factor and near-linear regret speedup compared to its single-agent counterpart when the time horizon is sufficiently large.
Abstract:In this paper, we present Jellyfish, an open-source LLM as a universal task solver for DP. Built on the Llama 2 13B model, Jellyfish is instruction-tuned with the datasets of several typical DP tasks including error detection, data imputation, schema matching, and entity matching, and delivers generalizability to other tasks. Remarkably, Jellyfish can operate on a local, single, and low-priced GPU with its 13 billion parameters, ensuring data security and enabling further tuning. Its proficiency in understanding natural language allows users to manually craft instructions for DP tasks. Unlike many existing methods that heavily rely on prior knowledge, Jellyfish acquires domain knowledge during its tuning process and integrates optional knowledge injection during inference. A distinctive feature of Jellyfish is its interpreter, which elucidates its output decisions. To construct Jellyfish, we develop a series of pre-tuning and DP-tuning techniques. Jellyfish is equipped with an instance serializer, which automatically translates raw data into model prompts, and a knowledge injector, which optionally introduces task- and dataset-specific knowledge to enhance DP performance. Our evaluation of Jellyfish, using a range of real datasets, shows its competitiveness compared to state-of-the-art methods and its strong generalizability to unseen tasks. Jellyfish's performance rivals that of GPT series models, and its interpreter offers enhanced reasoning capabilities compared to GPT-3.5. Furthermore, our evaluation highlights the effectiveness of the techniques employed in constructing Jellyfish. Our model is available at Hugging Face: https://huggingface.co/NECOUDBFM/Jellyfish .
Abstract:Decentralized exchanges (DEXs) are a cornerstone of decentralized finance (DeFi), allowing users to trade cryptocurrencies without the need for third-party authorization. Investors are incentivized to deposit assets into liquidity pools, against which users can trade directly, while paying fees to liquidity providers (LPs). However, a number of unresolved issues related to capital efficiency and market risk hinder DeFi's further development. Uniswap V3, a leading and groundbreaking DEX project, addresses capital efficiency by enabling LPs to concentrate their liquidity within specific price ranges for deposited assets. Nevertheless, this approach exacerbates market risk, as LPs earn trading fees only when asset prices are within these predetermined brackets. To mitigate this issue, this paper introduces a deep reinforcement learning (DRL) solution designed to adaptively adjust these price ranges, maximizing profits and mitigating market risks. Our approach also neutralizes price-change risks by hedging the liquidity position through a rebalancing portfolio in a centralized futures exchange. The DRL policy aims to optimize trading fees earned by LPs against associated costs, such as gas fees and hedging expenses, which is referred to as loss-versus-rebalancing (LVR). Using simulations with a profit-and-loss (PnL) benchmark, our method demonstrates superior performance in ETH/USDC and ETH/USDT pools compared to existing baselines. We believe that this strategy not only offers investors a valuable asset management tool but also introduces a new incentive mechanism for DEX designers.
Abstract:Large Language Models (LLMs), typified by OpenAI's GPT series and Meta's LLaMA variants, have marked a significant advancement in artificial intelligence. Trained on vast amounts of text data, LLMs are capable of understanding and generating human-like text across a diverse range of topics. This study expands on the applications of LLMs, exploring their potential in data preprocessing, a critical stage in data mining and analytics applications. We delve into the applicability of state-of-the-art LLMs such as GPT-3.5, GPT-4, and Vicuna-13B for error detection, data imputation, schema matching, and entity matching tasks. Alongside showcasing the inherent capabilities of LLMs, we highlight their limitations, particularly in terms of computational expense and inefficiency. We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques, coupled with traditional methods like contextualization and feature selection, to improve the performance and efficiency of these models. The effectiveness of LLMs in data preprocessing is evaluated through an experimental study spanning 12 datasets. GPT-4 emerged as a standout, achieving 100\% accuracy or F1 score on 4 datasets, suggesting LLMs' immense potential in these tasks. Despite certain limitations, our study underscores the promise of LLMs in this domain and anticipates future developments to overcome current hurdles.
Abstract:Computational Pathology (CoPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CoPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology facilitating transformational changes in the diagnosis and treatment of cancer diseases. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CoPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CoPath. In this article we provide a comprehensive review of more than 700 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CoPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CoPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CoPath.
Abstract:Recent advances of deep learning lead to great success of image and video super-resolution (SR) methods that are based on convolutional neural networks (CNN). For video SR, advanced algorithms have been proposed to exploit the temporal correlation between low-resolution (LR) video frames, and/or to super-resolve a frame with multiple LR frames. These methods pursue higher quality of super-resolved frames, where the quality is usually measured frame by frame in e.g. PSNR. However, frame-wise quality may not reveal the consistency between frames. If an algorithm is applied to each frame independently (which is the case of most previous methods), the algorithm may cause temporal inconsistency, which can be observed as flickering. It is a natural requirement to improve both frame-wise fidelity and between-frame consistency, which are termed spatial quality and temporal quality, respectively. Then we may ask, is a method optimized for spatial quality also optimized for temporal quality? Can we optimize the two quality metrics jointly?