Abstract:Differential privacy (DP) is widely being employed in the industry as a practical standard for privacy protection. While private training of computer vision or natural language processing applications has been studied extensively, the computational challenges of training of recommender systems (RecSys) with DP have not been explored. In this work, we first present our detailed characterization of private RecSys training using DP-SGD, root-causing its several performance bottlenecks. Specifically, we identify DP-SGD's noise sampling and noisy gradient update stage to suffer from a severe compute and memory bandwidth limitation, respectively, causing significant performance overhead in training private RecSys. Based on these findings, we propose LazyDP, an algorithm-software co-design that addresses the compute and memory challenges of training RecSys with DP-SGD. Compared to a state-of-the-art DP-SGD training system, we demonstrate that LazyDP provides an average 119x training throughput improvement while also ensuring mathematically equivalent, differentially private RecSys models to be trained.
Abstract:Secure multi-party computation (MPC) allows users to offload machine learning inference on untrusted servers without having to share their privacy-sensitive data. Despite their strong security properties, MPC-based private inference has not been widely adopted in the real world due to their high communication overhead. When evaluating ReLU layers, MPC protocols incur a significant amount of communication between the parties, making the end-to-end execution time multiple orders slower than its non-private counterpart. This paper presents HummingBird, an MPC framework that reduces the ReLU communication overhead significantly by using only a subset of the bits to evaluate ReLU on a smaller ring. Based on theoretical analyses, HummingBird identifies bits in the secret share that are not crucial for accuracy and excludes them during ReLU evaluation to reduce communication. With its efficient search engine, HummingBird discards 87--91% of the bits during ReLU and still maintains high accuracy. On a real MPC setup involving multiple servers, HummingBird achieves on average 2.03--2.67x end-to-end speedup without introducing any errors, and up to 8.64x average speedup when some amount of accuracy degradation can be tolerated, due to its up to 8.76x communication reduction.
Abstract:In today's machine learning (ML) models, any part of the training data can affect its output. This lack of control for information flow from training data to model output is a major obstacle in training models on sensitive data when access control only allows individual users to access a subset of data. To enable secure machine learning for access controlled data, we propose the notion of information flow control for machine learning, and develop a secure Transformer-based language model based on the Mixture-of-Experts (MoE) architecture. The secure MoE architecture controls information flow by limiting the influence of training data from each security domain to a single expert module, and only enabling a subset of experts at inference time based on an access control policy. The evaluation using a large corpus of text data shows that the proposed MoE architecture has minimal (1.9%) performance overhead and can significantly improve model accuracy (up to 37%) by enabling training on access-controlled data.
Abstract:Privacy-preserving instance encoding aims to encode raw data as feature vectors without revealing their privacy-sensitive information. When designed properly, these encodings can be used for downstream ML applications such as training and inference with limited privacy risk. However, the vast majority of existing instance encoding schemes are based on heuristics and their privacy-preserving properties are only validated empirically against a limited set of attacks. In this paper, we propose a theoretically-principled measure for the privacy of instance encoding based on Fisher information. We show that our privacy measure is intuitive, easily applicable, and can be used to bound the invertibility of encodings both theoretically and empirically.
Abstract:Online personalized recommendation services are generally hosted in the cloud where users query the cloud-based model to receive recommended input such as merchandise of interest or news feed. State-of-the-art recommendation models rely on sparse and dense features to represent users' profile information and the items they interact with. Although sparse features account for 99% of the total model size, there was not enough attention paid to the potential information leakage through sparse features. These sparse features are employed to track users' behavior, e.g., their click history, object interactions, etc., potentially carrying each user's private information. Sparse features are represented as learned embedding vectors that are stored in large tables, and personalized recommendation is performed by using a specific user's sparse feature to index through the tables. Even with recently-proposed methods that hides the computation happening in the cloud, an attacker in the cloud may be able to still track the access patterns to the embedding tables. This paper explores the private information that may be learned by tracking a recommendation model's sparse feature access patterns. We first characterize the types of attacks that can be carried out on sparse features in recommendation models in an untrusted cloud, followed by a demonstration of how each of these attacks leads to extracting users' private information or tracking users by their behavior over time.
Abstract:Federated learning (FL) aims to perform privacy-preserving machine learning on distributed data held by multiple data owners. To this end, FL requires the data owners to perform training locally and share the gradient updates (instead of the private inputs) with the central server, which are then securely aggregated over multiple data owners. Although aggregation by itself does not provably offer privacy protection, prior work showed that it may suffice if the batch size is sufficiently large. In this paper, we propose the Cocktail Party Attack (CPA) that, contrary to prior belief, is able to recover the private inputs from gradients aggregated over a very large batch size. CPA leverages the crucial insight that aggregate gradients from a fully connected layer is a linear combination of its inputs, which leads us to frame gradient inversion as a blind source separation (BSS) problem (informally called the cocktail party problem). We adapt independent component analysis (ICA)--a classic solution to the BSS problem--to recover private inputs for fully-connected and convolutional networks, and show that CPA significantly outperforms prior gradient inversion attacks, scales to ImageNet-sized inputs, and works on large batch sizes of up to 1024.
Abstract:Path planning for autonomous driving with dynamic obstacles poses a challenge because it needs to perform a higher-dimensional search (including time) while still meeting real-time constraints. This paper proposes an algorithm-hardware co-optimization approach to accelerate path planning with high-dimensional search space. First, we reduce the time for a nearest neighbor search and collision detection by mapping nodes and obstacles to a lower-dimensional space and memorizing recent search results. Then, we propose a hardware extension for efficient memorization. The experimental results on a modern processor and a cycle-level simulator show that the execution time is reduced significantly.
Abstract:Pruning is a popular technique for reducing the model size and computational cost of convolutional neural networks (CNNs). However, a slow retraining or fine-tuning procedure is often required to recover the accuracy loss caused by pruning. Recently, a new research direction on weight pruning, pruning-at-initialization (PAI), is proposed to directly prune CNNs before training so that fine-tuning or retraining can be avoided. While PAI has shown promising results in reducing the model size, existing approaches rely on fine-grained weight pruning which requires unstructured sparse matrix computation, making it difficult to achieve real speedup in practice unless the sparsity is very high. This work is the first to show that fine-grained weight pruning is in fact not necessary for PAI. Instead, the layerwise compression ratio is the main critical factor to determine the accuracy of a CNN model pruned at initialization. Based on this key observation, we propose PreCropping, a structured hardware-efficient model compression scheme. PreCropping directly compresses the model at the channel level following the layerwise compression ratio. Compared to weight pruning, the proposed scheme is regular and dense in both storage and computation without sacrificing accuracy. In addition, since PreCropping compresses CNNs at initialization, the computational and memory costs of CNNs are reduced for both training and inference on commodity hardware. We empirically demonstrate our approaches on several modern CNN architectures, including ResNet, ShuffleNet, and MobileNet for both CIFAR-10 and ImageNet.
Abstract:Neural network robustness has become a central topic in machine learning in recent years. Most training algorithms that improve the model's robustness to adversarial and common corruptions also introduce a large computational overhead, requiring as many as ten times the number of forward and backward passes in order to converge. To combat this inefficiency, we propose BulletTrain $-$ a boundary example mining technique to drastically reduce the computational cost of robust training. Our key observation is that only a small fraction of examples are beneficial for improving robustness. BulletTrain dynamically predicts these important examples and optimizes robust training algorithms to focus on the important examples. We apply our technique to several existing robust training algorithms and achieve a 2.1$\times$ speed-up for TRADES and MART on CIFAR-10 and a 1.7$\times$ speed-up for AugMix on CIFAR-10-C and CIFAR-100-C without any reduction in clean and robust accuracy.
Abstract:This paper proposes GuardNN, a secure deep neural network (DNN) accelerator, which provides strong hardware-based protection for user data and model parameters even in an untrusted environment. GuardNN shows that the architecture and protection can be customized for a specific application to provide strong confidentiality and integrity protection with negligible overhead. The design of the GuardNN instruction set reduces the TCB to just the accelerator and enables confidentiality protection without the overhead of integrity protection. GuardNN also introduces a new application-specific memory protection scheme to minimize the overhead of memory encryption and integrity verification. The scheme shows that most of the off-chip meta-data in today's state-of-the-art memory protection can be removed by exploiting the known memory access patterns of a DNN accelerator. GuardNN is implemented as an FPGA prototype, which demonstrates effective protection with less than 2% performance overhead for inference over a variety of modern DNN models.