Jack
Abstract:The integrity of time in distributed Internet of Things (IoT) devices is crucial for reliable operation in energy cyber-physical systems, such as smart grids and microgrids. However, IoT systems are vulnerable to clock drift, time-synchronization manipulation, and timestamp discontinuities, such as the Year 2038 (Y2K38) Unix overflow, all of which disrupt temporal ordering. Conventional anomaly-detection models, which assume reliable timestamps, fail to capture temporal inconsistencies. This paper introduces STGAT (Spatio-Temporal Graph Attention Network), a framework that models both temporal distortion and inter-device consistency in energy IoT systems. STGAT combines drift-aware temporal embeddings and temporal self-attention to capture corrupted time evolution at individual devices, and uses graph attention to model spatial propagation of timing errors. A curvature-regularized latent representation geometrically separates normal clock evolution from anomalies caused by drift, synchronization offsets, and overflow events. Experimental results on energy IoT telemetry with controlled timing perturbations show that STGAT achieves 95.7% accuracy, outperforming recurrent, transformer, and graph-based baselines with significant improvements (d > 1.8, p < 0.001). Additionally, STGAT reduces detection delay by 26%, achieving a 2.3-time-step delay while maintaining stable performance under overflow, drift, and physical inconsistencies.
Abstract:Federated learning (FL) has become an effective paradigm for privacy-preserving, distributed Intrusion Detection Systems (IDS) in cyber-physical and Internet of Things (IoT) networks, where centralized data aggregation is often infeasible due to privacy and bandwidth constraints. Despite its advantages, most existing FL-based IDS assume closed-set learning and lack mechanisms such as uncertainty estimation, semantic generalization, and explicit modeling of epistemic ambiguity in zero-day attack scenarios. Additionally, robustness to heterogeneous and unreliable clients remains a challenge in practical applications. This paper introduces a semantics-driven federated IDS framework that incorporates language-derived semantic supervision into federated optimization, enabling open-set and zero-shot intrusion detection for previously unseen attack behaviors. The approach constructs semantic attack prototypes using a Tri-LLM ensemble of GPT-4o, DeepSeek-V3, and LLaMA-3-8B, aligning distributed telemetry features with high-level attack concepts. Inter-LLM semantic disagreement is modeled as epistemic uncertainty for zero-day risk estimation, while a trust-aware aggregation mechanism dynamically weights client updates based on reliability. Experimental results show stable semantic alignment across heterogeneous clients and consistent convergence. The framework achieves over 80% zero-shot detection accuracy on unseen attack patterns, improving zero-day discrimination by more than 10% compared to similarity-based baselines, while maintaining low aggregation instability in the presence of unreliable or compromised clients.
Abstract:Large Language Models (LLMs) are increasingly adopted in sensitive domains such as healthcare and financial institutions' data analytics; however, their execution pipelines remain vulnerable to manipulation and unverifiable behavior. Existing control mechanisms, such as the Model Context Protocol (MCP), define compliance policies for tool invocation but lack verifiable enforcement and transparent validation of model actions. To address this gap, we propose a novel Secure Tool Manifest and Digital Signing Framework, a structured and security-aware extension of Model Context Protocols. The framework enforces cryptographically signed manifests, integrates transparent verification logs, and isolates model-internal execution metadata from user-visible components to ensure verifiable execution integrity. Furthermore, the evaluation demonstrates that the framework scales nearly linearly (R-squared = 0.998), achieves near-perfect acceptance of valid executions while consistently rejecting invalid ones, and maintains balanced model utilization across execution pipelines.
Abstract:The integration of large language models (LLMs) into autonomous agents has enabled complex tool use, yet in high-stakes domains, these systems must strictly adhere to regulatory standards beyond simple functional correctness. However, existing benchmarks often overlook implicit regulatory compliance, thus failing to evaluate whether LLMs can autonomously enforce mandatory safety constraints. To fill this gap, we introduce LogiSafetyGen, a framework that converts unstructured regulations into Linear Temporal Logic oracles and employs logic-guided fuzzing to synthesize valid, safety-critical traces. Building on this framework, we construct LogiSafetyBench, a benchmark comprising 240 human-verified tasks that require LLMs to generate Python programs that satisfy both functional objectives and latent compliance rules. Evaluations of 13 state-of-the-art (SOTA) LLMs reveal that larger models, despite achieving better functional correctness, frequently prioritize task completion over safety, which results in non-compliant behavior.
Abstract:The advent of transformer-based language models has reshaped how AI systems process and generate text. In software engineering (SE), these models now support diverse activities, accelerating automation and decision-making. Yet, evidence shows that these models can reproduce or amplify social biases, raising fairness concerns. Recent work on neuron editing has shown that internal activations in pre-trained transformers can be traced and modified to alter model behavior. Building on the concept of knowledge neurons, neurons that encode factual information, we hypothesize the existence of biased neurons that capture stereotypical associations within pre-trained transformers. To test this hypothesis, we build a dataset of biased relations, i.e., triplets encoding stereotypes across nine bias types, and adapt neuron attribution strategies to trace and suppress biased neurons in BERT models. We then assess the impact of suppression on SE tasks. Our findings show that biased knowledge is localized within small neuron subsets, and suppressing them substantially reduces bias with minimal performance loss. This demonstrates that bias in transformers can be traced and mitigated at the neuron level, offering an interpretable approach to fairness in SE.
Abstract:Machine learning (ML) underpins foundation models in finance, healthcare, and critical infrastructure, making them targets for data poisoning, model extraction, prompt injection, automated jailbreaking, and preference-guided black-box attacks that exploit model comparisons. Larger models can be more vulnerable to introspection-driven jailbreaks and cross-modal manipulation. Traditional cybersecurity lacks ML-specific threat modeling for foundation, multimodal, and RAG systems. Objective: Characterize ML security risks by identifying dominant TTPs, vulnerabilities, and targeted lifecycle stages. Methods: We extract 93 threats from MITRE ATLAS (26), AI Incident Database (12), and literature (55), and analyze 854 GitHub/Python repositories. A multi-agent RAG system (ChatGPT-4o, temp 0.4) mines 300+ articles to build an ontology-driven threat graph linking TTPs, vulnerabilities, and stages. Results: We identify unreported threats including commercial LLM API model stealing, parameter memorization leakage, and preference-guided text-only jailbreaks. Dominant TTPs include MASTERKEY-style jailbreaking, federated poisoning, diffusion backdoors, and preference optimization leakage, mainly impacting pre-training and inference. Graph analysis reveals dense vulnerability clusters in libraries with poor patch propagation. Conclusion: Adaptive, ML-specific security frameworks, combining dependency hygiene, threat intelligence, and monitoring, are essential to mitigate supply-chain and inference risks across the ML lifecycle.
Abstract:Despite their wide adoption in various domains (e.g., healthcare, finance, software engineering), Deep Learning (DL)-based applications suffer from many bugs, failures, and vulnerabilities. Reproducing these bugs is essential for their resolution, but it is extremely challenging due to the inherent nondeterminism of DL models and their tight coupling with hardware and software environments. According to recent studies, only about 3% of DL bugs can be reliably reproduced using manual approaches. To address these challenges, we present RepGen, a novel, automated, and intelligent approach for reproducing deep learning bugs. RepGen constructs a learning-enhanced context from a project, develops a comprehensive plan for bug reproduction, employs an iterative generate-validate-refine mechanism, and thus generates such code using an LLM that reproduces the bug at hand. We evaluate RepGen on 106 real-world deep learning bugs and achieve a reproduction rate of 80.19%, a 19.81% improvement over the state-of-the-art measure. A developer study involving 27 participants shows that RepGen improves the success rate of DL bug reproduction by 23.35%, reduces the time to reproduce by 56.8%, and lowers participants' cognitive load.
Abstract:Adaptive batch size methods aim to accelerate neural network training, but existing approaches apply identical adaptation strategies across all architectures, assuming a one-size-fits-all solution. We introduce DEBA (Dynamic Efficient Batch Adaptation), an adaptive batch scheduler that monitors gradient variance, gradient norm variation and loss variation to guide batch size adaptations. Through systematic evaluation across six architectures (ResNet-18/50, DenseNet-121, EfficientNet-B0, MobileNet-V3, ViT-B16) on CIFAR-10 and CIFAR-100, with five random seeds per configuration, we demonstrate that the architecture fundamentally determines adaptation efficacy. Our findings reveal that: (1) lightweight and medium-depth architectures (MobileNet-V3, DenseNet-121, EfficientNet-B0) achieve a 45-62% training speedup with simultaneous accuracy improvements of 1-7%; (2) shallow residual networks (ResNet-18) show consistent gains of +2.4 - 4.0% in accuracy, 36 - 43% in speedup, while deep residual networks (ResNet-50) exhibit high variance and occasional degradation; (3) already-stable architectures (ViT-B16) show minimal speedup (6%) despite maintaining accuracy, indicating that adaptation benefits vary with baseline optimization characteristics. We introduce a baseline characterization framework using gradient stability metrics (stability score, gradient norm variation) that predicts which architectures will benefit from adaptive scheduling. Our ablation studies reveal critical design choices often overlooked in prior work: sliding window statistics (vs. full history) and sufficient cooldown periods (5+ epochs) between adaptations are essential for success. This work challenges the prevailing assumption that adaptive methods generalize across architectures and provides the first systematic evidence that batch size adaptation requires an architecture-aware design.
Abstract:Deep neural networks (DNNs) are being utilized in various aspects of our daily lives, including high-stakes decision-making applications that impact individuals. However, these systems reflect and amplify bias from the data used during training and testing, potentially resulting in biased behavior and inaccurate decisions. For instance, having different misclassification rates between white and black sub-populations. However, effectively and efficiently identifying and correcting biased behavior in DNNs is a challenge. This paper introduces FairFLRep, an automated fairness-aware fault localization and repair technique that identifies and corrects potentially bias-inducing neurons in DNN classifiers. FairFLRep focuses on adjusting neuron weights associated with sensitive attributes, such as race or gender, that contribute to unfair decisions. By analyzing the input-output relationships within the network, FairFLRep corrects neurons responsible for disparities in predictive quality parity. We evaluate FairFLRep on four image classification datasets using two DNN classifiers, and four tabular datasets with a DNN model. The results show that FairFLRep consistently outperforms existing methods in improving fairness while preserving accuracy. An ablation study confirms the importance of considering fairness during both fault localization and repair stages. Our findings also show that FairFLRep is more efficient than the baseline approaches in repairing the network.
Abstract:Software logs are messages recorded during the execution of a software system that provide crucial run-time information about events and activities. Although software logs have a critical role in software maintenance and operation tasks, publicly accessible log datasets remain limited, hindering advance in log analysis research and practices. The presence of sensitive information, particularly Personally Identifiable Information (PII) and quasi-identifiers, introduces serious privacy and re-identification risks, discouraging the publishing and sharing of real-world logs. In practice, log anonymization techniques primarily rely on regular expression patterns, which involve manually crafting rules to identify and replace sensitive information. However, these regex-based approaches suffer from significant limitations, such as extensive manual efforts and poor generalizability across diverse log formats and datasets. To mitigate these limitations, we introduce SDLog, a deep learning-based framework designed to identify sensitive information in software logs. Our results show that SDLog overcomes regex limitations and outperforms the best-performing regex patterns in identifying sensitive information. With only 100 fine-tuning samples from the target dataset, SDLog can correctly identify 99.5% of sensitive attributes and achieves an F1-score of 98.4%. To the best of our knowledge, this is the first deep learning alternative to regex-based methods in software log anonymization.