Abstract:Nowadays, the fields of code and natural language processing are evolving rapidly. In particular, models become better at processing long context windows - supported context sizes have increased by orders of magnitude over the last few years. However, there is a shortage of benchmarks for code processing that go beyond a single file of context, while the most popular ones are limited to a single method. With this work, we aim to close this gap by introducing Long Code Arena, a suite of six benchmarks for code processing tasks that require project-wide context. These tasks cover different aspects of code processing: library-based code generation, CI builds repair, project-level code completion, commit message generation, bug localization, and module summarization. For each task, we provide a manually verified dataset for testing, an evaluation suite, and open-source baseline solutions based on popular LLMs to showcase the usage of the dataset and to simplify adoption by other researchers. We publish the benchmark page on HuggingFace Spaces with the leaderboard, links to HuggingFace Hub for all the datasets, and link to the GitHub repository with baselines: https://huggingface.co/spaces/JetBrains-Research/long-code-arena.
Abstract:Excessively long methods, loaded with multiple responsibilities, are challenging to understand, debug, reuse, and maintain. The solution lies in the widely recognized Extract Method refactoring. While the application of this refactoring is supported in modern IDEs, recommending which code fragments to extract has been the topic of many research tools. However, they often struggle to replicate real-world developer practices, resulting in recommendations that do not align with what a human developer would do in real life. To address this issue, we introduce EM-Assist, an IntelliJ IDEA plugin that uses LLMs to generate refactoring suggestions and subsequently validates, enhances, and ranks them. Finally, EM-Assist uses the IntelliJ IDE to apply the user-selected recommendation. In our extensive evaluation of 1,752 real-world refactorings that actually took place in open-source projects, EM-Assist's recall rate was 53.4% among its top-5 recommendations, compared to 39.4% for the previous best-in-class tool that relies solely on static analysis. Moreover, we conducted a usability survey with 18 industrial developers and 94.4% gave a positive rating.
Abstract:In this technical report, we present three novel datasets of Kotlin code: KStack, KStack-clean, and KExercises. We also describe the results of fine-tuning CodeLlama and DeepSeek models on this data. Additionally, we present a version of the HumanEval benchmark rewritten by human experts into Kotlin - both the solutions and the tests. Our results demonstrate that small, high-quality datasets (KStack-clean and KExercises) can significantly improve model performance on code generation tasks, achieving up to a 16-point increase in pass rate on the HumanEval benchmark. Lastly, we discuss potential future work in the field of improving language modeling for Kotlin, including the use of static analysis tools in the learning process and the introduction of more intricate and realistic benchmarks.
Abstract:Commit messages are crucial to software development, allowing developers to track changes and collaborate effectively. Despite their utility, most commit messages lack important information since writing high-quality commit messages is tedious and time-consuming. The active research on commit message generation (CMG) has not yet led to wide adoption in practice. We argue that if we could shift the focus from commit message generation to commit message completion and use previous commit history as additional context, we could significantly improve the quality and the personal nature of the resulting commit messages. In this paper, we propose and evaluate both of these novel ideas. Since the existing datasets lack historical data, we collect and share a novel dataset called CommitChronicle, containing 10.7M commits across 20 programming languages. We use this dataset to evaluate the completion setting and the usefulness of the historical context for state-of-the-art CMG models and GPT-3.5-turbo. Our results show that in some contexts, commit message completion shows better results than generation, and that while in general GPT-3.5-turbo performs worse, it shows potential for long and detailed messages. As for the history, the results show that historical information improves the performance of CMG models in the generation task, and the performance of GPT-3.5-turbo in both generation and completion.
Abstract:In recent years, researchers have created and introduced a significant number of various code generation models. As human evaluation of every new model version is unfeasible, the community adopted automatic evaluation metrics such as BLEU to approximate the results of human judgement. These metrics originate from the machine translation domain and it is unclear whether they are applicable for the code generation tasks and how well do they agree with the human evaluation on this task. There also are two metrics, CodeBLEU and RUBY, that were developed to estimate the similarity of code and take into account the code properties. However, for these metrics there are hardly any studies on their agreement with the human evaluation. Despite all that, minimal differences in the metric scores are used to claim superiority of some code generation models over the others. In this paper, we present a study on applicability of six metrics -- BLEU, ROUGE-L, METEOR, ChrF, CodeBLEU, RUBY -- for evaluation of the code generation models. We conduct a study on two different code generation datasets and use human annotators to assess the quality of all models run on these datasets. The results indicate that for the CoNaLa dataset of Python one-liners none of the metrics can correctly emulate human judgement on which model is better with $>95\%$ certainty if the difference in model scores is less than 5 points. For the HearthStone dataset, which consists of classes of particular structure, the difference in model scores of at least 2 points is enough to claim the superiority of one model over the other. Using our findings, we derive several recommendations on using metrics to estimate the model performance on the code generation task.
Abstract:Code clones are pairs of code snippets that implement similar functionality. Clone detection is a fundamental branch of automatic source code comprehension, having many applications in refactoring recommendation, plagiarism detection, and code summarization. A particularly interesting case of clone detection is the detection of semantic clones, i.e., code snippets that have the same functionality but significantly differ in implementation. A promising approach to detecting semantic clones is contrastive learning (CL), a machine learning paradigm popular in computer vision but not yet commonly adopted for code processing. Our work aims to evaluate the most popular CL algorithms combined with three source code representations on two tasks. The first task is code clone detection, which we evaluate on the POJ-104 dataset containing implementations of 104 algorithms. The second task is plagiarism detection. To evaluate the models on this task, we introduce CodeTransformator, a tool for transforming source code. We use it to create a dataset that mimics plagiarised code based on competitive programming solutions. We trained nine models for both tasks and compared them with six existing approaches, including traditional tools and modern pre-trained neural models. The results of our evaluation show that proposed models perform diversely in each task, however the performance of the graph-based models is generally above the others. Among CL algorithms, SimCLR and SwAV lead to better results, while Moco is the most robust approach. Our code and trained models are available at https://doi.org/10.5281/zenodo.6360627, https://doi.org/10.5281/zenodo.5596345.
Abstract:As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599.
Abstract:Machine Learning for Software Engineering (ML4SE) is an actively growing research area that focuses on methods that help programmers in their work. In order to apply the developed methods in practice, they need to achieve reasonable quality in order to help rather than distract developers. While the development of new approaches to code representation and data collection improves the overall quality of the models, it does not take into account the information that we can get from the project at hand. In this work, we investigate how the model's quality can be improved if we target a specific project. We develop a framework to assess quality improvements that models can get after fine-tuning for the method name prediction task on a particular project. We evaluate three models of different complexity and compare their quality in three settings: trained on a large dataset of Java projects, further fine-tuned on the data from a particular project, and trained from scratch on this data. We show that per-project fine-tuning can greatly improve the models' quality as they capture the project's domain and naming conventions. We open-source the tool we used for data collection, as well as the code to run the experiments: https://zenodo.org/record/6040745.
Abstract:A lot of problems in the field of software engineering - bug fixing, commit message generation, etc. - require analyzing not only the code itself but specifically code changes. Applying machine learning models to these tasks requires us to create numerical representations of the changes, i.e. embeddings. Recent studies demonstrate that the best way to obtain these embeddings is to pre-train a deep neural network in an unsupervised manner on a large volume of unlabeled data and then further fine-tune it for a specific task. In this work, we propose an approach for obtaining such embeddings of code changes during pre-training and evaluate them on two different downstream tasks - applying changes to code and commit message generation. The pre-training consists of the model learning to apply the given change (an edit sequence) to the code in a correct way, and therefore requires only the code change itself. To increase the quality of the obtained embeddings, we only consider the changed tokens in the edit sequence. In the task of applying code changes, our model outperforms the model that uses full edit sequences by 5.9 percentage points in accuracy. As for the commit message generation, our model demonstrated the same results as supervised models trained for this specific task, which indicates that it can encode code changes well and can be improved in the future by pre-training on a larger dataset of easily gathered code changes.
Abstract:The application of machine learning algorithms to source code has grown in the past years. Since these algorithms are quite sensitive to input data, it is not surprising that researchers experiment with input representations. Nowadays, a popular starting point to represent code is abstract syntax trees (ASTs). Abstract syntax trees have been used for a long time in various software engineering domains, and in particular in IDEs. The API of modern IDEs allows to manipulate and traverse ASTs, resolve references between code elements, etc. Such algorithms can enrich ASTs with new data and therefore may be useful in ML-based code analysis. In this work, we present PSIMiner - a tool for processing PSI trees from the IntelliJ Platform. PSI trees contain code syntax trees as well as functions to work with them, and therefore can be used to enrich code representation using static analysis algorithms of modern IDEs. To showcase this idea, we use our tool to infer types of identifiers in Java ASTs and extend the code2seq model for the method name prediction problem.