Abstract:While most existing federated learning (FL) approaches assume a fixed set of clients in the system, in practice, clients can dynamically leave or join the system depending on their needs or interest in the specific task. This dynamic FL setting introduces several key challenges: (1) the objective function dynamically changes depending on the current set of clients, unlike traditional FL approaches that maintain a static optimization goal; (2) the current global model may not serve as the best initial point for the next FL rounds and could potentially lead to slow adaptation, given the possibility of clients leaving or joining the system. In this paper, we consider a dynamic optimization objective in FL that seeks the optimal model tailored to the currently active set of clients. Building on our probabilistic framework that provides direct insights into how the arrival and departure of different types of clients influence the shifts in optimal points, we establish an upper bound on the optimality gap, accounting for factors such as stochastic gradient noise, local training iterations, non-IIDness of data distribution, and deviations between optimal points caused by dynamic client pattern. We also propose an adaptive initial model construction strategy that employs weighted averaging guided by gradient similarity, prioritizing models trained on clients whose data characteristics align closely with the current one, thereby enhancing adaptability to the current clients. The proposed approach is validated on various datasets and FL algorithms, demonstrating robust performance across diverse client arrival and departure patterns, underscoring its effectiveness in dynamic FL environments.
Abstract:Reinforcement learning from human feedback (RLHF) methods are emerging as a way to fine-tune diffusion models (DMs) for visual generation. However, commonly used on-policy strategies are limited by the generalization capability of the reward model, while off-policy approaches require large amounts of difficult-to-obtain paired human-annotated data, particularly in visual generation tasks. To address the limitations of both on- and off-policy RLHF, we propose a preference optimization method that aligns DMs with preferences without relying on reward models or paired human-annotated data. Specifically, we introduce a Semi-Policy Preference Optimization (SePPO) method. SePPO leverages previous checkpoints as reference models while using them to generate on-policy reference samples, which replace "losing images" in preference pairs. This approach allows us to optimize using only off-policy "winning images." Furthermore, we design a strategy for reference model selection that expands the exploration in the policy space. Notably, we do not simply treat reference samples as negative examples for learning. Instead, we design an anchor-based criterion to assess whether the reference samples are likely to be winning or losing images, allowing the model to selectively learn from the generated reference samples. This approach mitigates performance degradation caused by the uncertainty in reference sample quality. We validate SePPO across both text-to-image and text-to-video benchmarks. SePPO surpasses all previous approaches on the text-to-image benchmarks and also demonstrates outstanding performance on the text-to-video benchmarks. Code will be released in https://github.com/DwanZhang-AI/SePPO.
Abstract:While traditional federated learning (FL) typically focuses on a star topology where clients are directly connected to a central server, real-world distributed systems often exhibit hierarchical architectures. Hierarchical FL (HFL) has emerged as a promising solution to bridge this gap, leveraging aggregation points at multiple levels of the system. However, existing algorithms for HFL encounter challenges in dealing with multi-timescale model drift, i.e., model drift occurring across hierarchical levels of data heterogeneity. In this paper, we propose a multi-timescale gradient correction (MTGC) methodology to resolve this issue. Our key idea is to introduce distinct control variables to (i) correct the client gradient towards the group gradient, i.e., to reduce client model drift caused by local updates based on individual datasets, and (ii) correct the group gradient towards the global gradient, i.e., to reduce group model drift caused by FL over clients within the group. We analytically characterize the convergence behavior of MTGC under general non-convex settings, overcoming challenges associated with couplings between correction terms. We show that our convergence bound is immune to the extent of data heterogeneity, confirming the stability of the proposed algorithm against multi-level non-i.i.d. data. Through extensive experiments on various datasets and models, we validate the effectiveness of MTGC in diverse HFL settings. The code for this project is available at \href{https://github.com/wenzhifang/MTGC}{https://github.com/wenzhifang/MTGC}.
Abstract:Over the past several years, various federated learning (FL) methodologies have been developed to improve model accuracy, a primary performance metric in machine learning. However, to utilize FL in practical decision-making scenarios, beyond considering accuracy, the trained model must also have a reliable confidence in each of its predictions, an aspect that has been largely overlooked in existing FL research. Motivated by this gap, we propose Non-Uniform Calibration for Federated Learning (NUCFL), a generic framework that integrates FL with the concept of model calibration. The inherent data heterogeneity in FL environments makes model calibration particularly difficult, as it must ensure reliability across diverse data distributions and client conditions. Our NUCFL addresses this challenge by dynamically adjusting the model calibration objectives based on statistical relationships between each client's local model and the global model in FL. In particular, NUCFL assesses the similarity between local and global model relationships, and controls the penalty term for the calibration loss during client-side local training. By doing so, NUCFL effectively aligns calibration needs for the global model in heterogeneous FL settings while not sacrificing accuracy. Extensive experiments show that NUCFL offers flexibility and effectiveness across various FL algorithms, enhancing accuracy as well as model calibration.
Abstract:To improve the efficiency of reinforcement learning, we propose a novel asynchronous federated reinforcement learning framework termed AFedPG, which constructs a global model through collaboration among $N$ agents using policy gradient (PG) updates. To handle the challenge of lagged policies in asynchronous settings, we design delay-adaptive lookahead and normalized update techniques that can effectively handle the heterogeneous arrival times of policy gradients. We analyze the theoretical global convergence bound of AFedPG, and characterize the advantage of the proposed algorithm in terms of both the sample complexity and time complexity. Specifically, our AFedPG method achieves $\mathcal{O}(\frac{{\epsilon}^{-2.5}}{N})$ sample complexity at each agent on average. Compared to the single agent setting with $\mathcal{O}(\epsilon^{-2.5})$ sample complexity, it enjoys a linear speedup with respect to the number of agents. Moreover, compared to synchronous FedPG, AFedPG improves the time complexity from $\mathcal{O}(\frac{t_{\max}}{N})$ to $\mathcal{O}(\frac{1}{\sum_{i=1}^{N} \frac{1}{t_{i}}})$, where $t_{i}$ denotes the time consumption in each iteration at the agent $i$, and $t_{\max}$ is the largest one. The latter complexity $\mathcal{O}(\frac{1}{\sum_{i=1}^{N} \frac{1}{t_{i}}})$ is always smaller than the former one, and this improvement becomes significant in large-scale federated settings with heterogeneous computing powers ($t_{\max}\gg t_{\min}$). Finally, we empirically verify the improved performances of AFedPG in three MuJoCo environments with varying numbers of agents. We also demonstrate the improvements with different computing heterogeneity.
Abstract:Research interests in the robustness of deep neural networks against domain shifts have been rapidly increasing in recent years. Most existing works, however, focus on improving the accuracy of the model, not the calibration performance which is another important requirement for trustworthy AI systems. Temperature scaling (TS), an accuracy-preserving post-hoc calibration method, has been proven to be effective in in-domain settings, but not in out-of-domain (OOD) due to the difficulty in obtaining a validation set for the unseen domain beforehand. In this paper, we propose consistency-guided temperature scaling (CTS), a new temperature scaling strategy that can significantly enhance the OOD calibration performance by providing mutual supervision among data samples in the source domains. Motivated by our observation that over-confidence stemming from inconsistent sample predictions is the main obstacle to OOD calibration, we propose to guide the scaling process by taking consistencies into account in terms of two different aspects -- style and content -- which are the key components that can well-represent data samples in multi-domain settings. Experimental results demonstrate that our proposed strategy outperforms existing works, achieving superior OOD calibration performance on various datasets. This can be accomplished by employing only the source domains without compromising accuracy, making our scheme directly applicable to various trustworthy AI systems.
Abstract:Decentralized Federated Learning (DFL) has received significant recent research attention, capturing settings where both model updates and model aggregations -- the two key FL processes -- are conducted by the clients. In this work, we propose Decentralized Sporadic Federated Learning ($\texttt{DSpodFL}$), a DFL methodology which generalizes the notion of sporadicity in both of these processes, modeling the impact of different forms of heterogeneity that manifest in realistic DFL settings. $\texttt{DSpodFL}$ unifies many of the prominent decentralized optimization methods, e.g., distributed gradient descent (DGD), randomized gossip (RG), and decentralized federated averaging (DFedAvg), under a single modeling framework. We analytically characterize the convergence behavior of $\texttt{DSpodFL}$, showing, among other insights, that we can match a geometric convergence rate to a finite optimality gap under more general assumptions than in existing works. Through experiments, we demonstrate that $\texttt{DSpodFL}$ achieves significantly improved training speeds and robustness to variations in system parameters compared to the state-of-the-art.
Abstract:Most existing federated learning (FL) methodologies have assumed training begins from a randomly initialized model. Recently, several studies have empirically demonstrated that leveraging a pre-trained model can offer advantageous initializations for FL. In this paper, we propose a collaborative pre-training approach, CoPreFL, which strategically designs a pre-trained model to serve as a good initialization for any downstream FL task. The key idea of our pre-training algorithm is a meta-learning procedure which mimics downstream distributed scenarios, enabling it to adapt to any unforeseen FL task. CoPreFL's pre-training optimization procedure also strikes a balance between average performance and fairness, with the aim of addressing these competing challenges in downstream FL tasks through intelligent initializations. Extensive experimental results validate that our pre-training method provides a robust initialization for any unseen downstream FL task, resulting in enhanced average performance and more equitable predictions.
Abstract:Multimodal federated learning (FL) aims to enrich model training in FL settings where clients are collecting measurements across multiple modalities. However, key challenges to multimodal FL remain unaddressed, particularly in heterogeneous network settings where: (i) the set of modalities collected by each client will be diverse, and (ii) communication limitations prevent clients from uploading all their locally trained modality models to the server. In this paper, we propose multimodal Federated learning with joint Modality and Client selection (mmFedMC), a new FL methodology that can tackle the above-mentioned challenges in multimodal settings. The joint selection algorithm incorporates two main components: (a) A modality selection methodology for each client, which weighs (i) the impact of the modality, gauged by Shapley value analysis, (ii) the modality model size as a gauge of communication overhead, against (iii) the frequency of modality model updates, denoted recency, to enhance generalizability. (b) A client selection strategy for the server based on the local loss of modality model at each client. Experiments on five real-world datasets demonstrate the ability of mmFedMC to achieve comparable accuracy to several baselines while reducing the communication overhead by over 20x. A demo video of our methodology is available at https://liangqiy.com/mmfedmc/.
Abstract:Federated learning (FL) is a promising approach for solving multilingual tasks, potentially enabling clients with their own language-specific data to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. In this paper, we propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.