Abstract:Multimodal sarcasm detection (MSD) is essential for various downstream tasks. Existing MSD methods tend to rely on spurious correlations. These methods often mistakenly prioritize non-essential features yet still make correct predictions, demonstrating poor generalizability beyond training environments. Regarding this phenomenon, this paper undertakes several initiatives. Firstly, we identify two primary causes that lead to the reliance of spurious correlations. Secondly, we address these challenges by proposing a novel method that integrate Multimodal Incongruities via Contrastive Learning (MICL) for multimodal sarcasm detection. Specifically, we first leverage incongruity to drive multi-view learning from three views: token-patch, entity-object, and sentiment. Then, we introduce extensive data augmentation to mitigate the biased learning of the textual modality. Additionally, we construct a test set, SPMSD, which consists potential spurious correlations to evaluate the the model's generalizability. Experimental results demonstrate the superiority of MICL on benchmark datasets, along with the analyses showcasing MICL's advancement in mitigating the effect of spurious correlation.
Abstract:Analogical reasoning, particularly in multimodal contexts, is the foundation of human perception and creativity. Multimodal Large Language Model (MLLM) has recently sparked considerable discussion due to its emergent capabilities. In this paper, we delve into the multimodal analogical reasoning capability of MLLM. Specifically, we explore two facets: \textit{MLLM as an explainer} and \textit{MLLM as a predictor}. In \textit{MLLM as an explainer}, we primarily focus on whether MLLM can deeply comprehend multimodal analogical reasoning problems. We propose a unified prompt template and a method for harnessing the comprehension capabilities of MLLM to augment existing models. In \textit{MLLM as a predictor}, we aim to determine whether MLLM can directly solve multimodal analogical reasoning problems. The experiments show that our approach outperforms existing methods on popular datasets, providing preliminary evidence for the analogical reasoning capability of MLLM.
Abstract:Diffusion-based zero-shot image restoration and enhancement models have achieved great success in various image restoration and enhancement tasks without training. However, directly applying them to video restoration and enhancement results in severe temporal flickering artifacts. In this paper, we propose the first framework for zero-shot video restoration and enhancement based on a pre-trained image diffusion model. By replacing the self-attention layer with the proposed cross-previous-frame attention layer, the pre-trained image diffusion model can take advantage of the temporal correlation between neighboring frames. We further propose temporal consistency guidance, spatial-temporal noise sharing, and an early stopping sampling strategy for better temporally consistent sampling. Our method is a plug-and-play module that can be inserted into any diffusion-based zero-shot image restoration or enhancement methods to further improve their performance. Experimental results demonstrate the superiority of our proposed method in producing temporally consistent videos with better fidelity.
Abstract:Policymakers frequently analyze air quality and climate change in isolation, disregarding their interactions. This study explores the influence of specific climate factors on air quality by contrasting a regression model with K-Means Clustering, Hierarchical Clustering, and Random Forest techniques. We employ Physics-based Deep Learning (PBDL) and Long Short-Term Memory (LSTM) to examine the air pollution predictions. Our analysis utilizes ten years (2009-2018) of daily traffic, weather, and air pollution data from three major cities in Norway. Findings from feature selection reveal a correlation between rising heating degree days and heightened air pollution levels, suggesting increased heating activities in Norway are a contributing factor to worsening air quality. PBDL demonstrates superior accuracy in air pollution predictions compared to LSTM. This paper contributes to the growing literature on PBDL methods for more accurate air pollution predictions using environmental variables, aiding policymakers in formulating effective data-driven climate policies.
Abstract:Landslide is a natural disaster that can easily threaten local ecology, people's lives and property. In this paper, we conduct modelling research on real unidirectional surface displacement data of recent landslides in the research area and propose a time series prediction framework named VMD-SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) based on variational mode decomposition, which can predict the landslide surface displacement more accurately. The model performs well on the test set. Except for the random item subsequence that is hard to fit, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the trend item subsequence and the periodic item subsequence are both less than 0.1, and the RMSE is as low as 0.006 for the periodic item prediction module based on XGBoost\footnote{Accepted in ICANN2023}.
Abstract:There are two fundamental problems in applying deep learning/machine learning methods to disease classification tasks, one is the insufficient number and poor quality of training samples; another one is how to effectively fuse multiple source features and thus train robust classification models. To address these problems, inspired by the process of human learning knowledge, we propose the Feature-aware Fusion Correlation Neural Network (FaFCNN), which introduces a feature-aware interaction module and a feature alignment module based on domain adversarial learning. This is a general framework for disease classification, and FaFCNN improves the way existing methods obtain sample correlation features. The experimental results show that training using augmented features obtained by pre-training gradient boosting decision tree yields more performance gains than random-forest based methods. On the low-quality dataset with a large amount of missing data in our setup, FaFCNN obtains a consistently optimal performance compared to competitive baselines. In addition, extensive experiments demonstrate the robustness of the proposed method and the effectiveness of each component of the model\footnote{Accepted in IEEE SMC2023}.
Abstract:In recent years, raw video denoising has garnered increased attention due to the consistency with the imaging process and well-studied noise modeling in the raw domain. However, two problems still hinder the denoising performance. Firstly, there is no large dataset with realistic motions for supervised raw video denoising, as capturing noisy and clean frames for real dynamic scenes is difficult. To address this, we propose recapturing existing high-resolution videos displayed on a 4K screen with high-low ISO settings to construct noisy-clean paired frames. In this way, we construct a video denoising dataset (named as ReCRVD) with 120 groups of noisy-clean videos, whose ISO values ranging from 1600 to 25600. Secondly, while non-local temporal-spatial attention is beneficial for denoising, it often leads to heavy computation costs. We propose an efficient raw video denoising transformer network (RViDeformer) that explores both short and long-distance correlations. Specifically, we propose multi-branch spatial and temporal attention modules, which explore the patch correlations from local window, local low-resolution window, global downsampled window, and neighbor-involved window, and then they are fused together. We employ reparameterization to reduce computation costs. Our network is trained in both supervised and unsupervised manners, achieving the best performance compared with state-of-the-art methods. Additionally, the model trained with our proposed dataset (ReCRVD) outperforms the model trained with previous benchmark dataset (CRVD) when evaluated on the real-world outdoor noisy videos. Our code and dataset will be released after the acceptance of this work.
Abstract:Capturing high dynamic range (HDR) images (videos) is attractive because it can reveal the details in both dark and bright regions. Since the mainstream screens only support low dynamic range (LDR) content, tone mapping algorithm is required to compress the dynamic range of HDR images (videos). Although image tone mapping has been widely explored, video tone mapping is lagging behind, especially for the deep-learning-based methods, due to the lack of HDR-LDR video pairs. In this work, we propose a unified framework (IVTMNet) for unsupervised image and video tone mapping. To improve unsupervised training, we propose domain and instance based contrastive learning loss. Instead of using a universal feature extractor, such as VGG to extract the features for similarity measurement, we propose a novel latent code, which is an aggregation of the brightness and contrast of extracted features, to measure the similarity of different pairs. We totally construct two negative pairs and three positive pairs to constrain the latent codes of tone mapped results. For video tone mapping, we propose a temporal-feature-replaced (TFR) module to efficiently utilize the temporal correlation and improve the temporal consistency of video tone-mapped results. We construct a large-scale unpaired HDR-LDR video dataset to facilitate the unsupervised training process for video tone mapping. Experimental results demonstrate that our method outperforms state-of-the-art image and video tone mapping methods. Our code and dataset will be released after the acceptance of this work.
Abstract:The Click-though Rate (CTR) prediction task is a basic task in recommendation system. Most of the previous researches of CTR models built based on Wide \& deep structure and gradually evolved into parallel structures with different modules. However, the simple accumulation of parallel structures can lead to higher structural complexity and longer training time. Based on the Sigmoid activation function of output layer, the linear addition activation value of parallel structures in the training process is easy to make the samples fall into the weak gradient interval, resulting in the phenomenon of weak gradient, and reducing the effectiveness of training. To this end, this paper proposes a Parallel Heterogeneous Network (PHN) model, which constructs a network with parallel structure through three different interaction analysis methods, and uses Soft Selection Gating (SSG) to feature heterogeneous data with different structure. Finally, residual link with trainable parameters are used in the network to mitigate the influence of weak gradient phenomenon. Furthermore, we demonstrate the effectiveness of PHN in a large number of comparative experiments, and visualize the performance of the model in training process and structure.
Abstract:A common challenge posed to robust semantic segmentation is the expensive data annotation cost. Existing semi-supervised solutions show great potential toward solving this problem. Their key idea is constructing consistency regularization with unsupervised data augmentation from unlabeled data for model training. The perturbations for unlabeled data enable the consistency training loss, which benefits semi-supervised semantic segmentation. However, these perturbations destroy image context and introduce unnatural boundaries, which is harmful for semantic segmentation. Besides, the widely adopted semi-supervised learning framework, i.e. mean-teacher, suffers performance limitation since the student model finally converges to the teacher model. In this paper, first of all, we propose a context friendly differentiable geometric warping to conduct unsupervised data augmentation; secondly, a novel adversarial dual-student framework is proposed to improve the Mean-Teacher from the following two aspects: (1) dual student models are learnt independently except for a stabilization constraint to encourage exploiting model diversities; (2) adversarial training scheme is applied to both students and the discriminators are resorted to distinguish reliable pseudo-label of unlabeled data for self-training. Effectiveness is validated via extensive experiments on PASCAL VOC2012 and Citescapes. Our solution significantly improves the performance and state-of-the-art results are achieved on both datasets. Remarkably, compared with fully supervision, our solution achieves comparable mIoU of 73.4% using only 12.5% annotated data on PASCAL VOC2012.