Abstract:As the conversation around using geoengineering to combat climate change intensifies, it is imperative to engage the public and deeply understand their perspectives on geoengineering research, development, and potential deployment. Through a comprehensive data-driven investigation, this paper explores the types of news that captivate public interest in geoengineering. We delved into 30,773 English-language news articles from the BBC and the New York Times, combined with Google Trends data spanning 2018 to 2022, to explore how public interest in geoengineering fluctuates in response to news coverage of broader climate issues. Using BERT-based topic modeling, sentiment analysis, and time-series regression models, we found that positive sentiment in energy-related news serves as a good predictor of heightened public interest in geoengineering, a trend that persists over time. Our findings suggest that public engagement with geoengineering and climate action is not uniform, with some topics being more potent in shaping interest over time, such as climate news related to energy, disasters, and politics. Understanding these patterns is crucial for scientists, policymakers, and educators aiming to craft effective strategies for engaging with the public and fostering dialogue around emerging climate technologies.
Abstract:Policymakers frequently analyze air quality and climate change in isolation, disregarding their interactions. This study explores the influence of specific climate factors on air quality by contrasting a regression model with K-Means Clustering, Hierarchical Clustering, and Random Forest techniques. We employ Physics-based Deep Learning (PBDL) and Long Short-Term Memory (LSTM) to examine the air pollution predictions. Our analysis utilizes ten years (2009-2018) of daily traffic, weather, and air pollution data from three major cities in Norway. Findings from feature selection reveal a correlation between rising heating degree days and heightened air pollution levels, suggesting increased heating activities in Norway are a contributing factor to worsening air quality. PBDL demonstrates superior accuracy in air pollution predictions compared to LSTM. This paper contributes to the growing literature on PBDL methods for more accurate air pollution predictions using environmental variables, aiding policymakers in formulating effective data-driven climate policies.
Abstract:This paper presents a new approach to evaluating the quality of answers in political question-and-answer sessions. We propose to measure an answer's quality based on the degree to which it allows us to infer the initial question accurately. This conception of answer quality inherently reflects their relevance to initial questions. Drawing parallels with semantic search, we argue that this measurement approach can be operationalized by fine-tuning a large language model on the observed corpus of questions and answers without additional labeled data. We showcase our measurement approach within the context of the Question Period in the Canadian House of Commons. Our approach yields valuable insights into the correlates of the quality of answers in the Question Period. We find that answer quality varies significantly based on the party affiliation of the members of Parliament asking the questions and uncover a meaningful correlation between answer quality and the topics of the questions.
Abstract:Social bias in Pretrained Language Models (PLMs) affects text generation and other downstream NLP tasks. Existing bias testing methods rely predominantly on manual templates or on expensive crowd-sourced data. We propose a novel AutoBiasTest method that automatically generates sentences for testing bias in PLMs, hence providing a flexible and low-cost alternative. Our approach uses another PLM for generation and controls the generation of sentences by conditioning on social group and attribute terms. We show that generated sentences are natural and similar to human-produced content in terms of word length and diversity. We illustrate that larger models used for generation produce estimates of social bias with lower variance. We find that our bias scores are well correlated with manual templates, but AutoBiasTest highlights biases not captured by these templates due to more diverse and realistic test sentences. By automating large-scale test sentence generation, we enable better estimation of underlying bias distributions
Abstract:Labeling social-media data for custom dimensions of toxicity and social bias is challenging and labor-intensive. Existing transfer and active learning approaches meant to reduce annotation effort require fine-tuning, which suffers from over-fitting to noise and can cause domain shift with small sample sizes. In this work, we propose a novel Active Transfer Few-shot Instructions (ATF) approach which requires no fine-tuning. ATF leverages the internal linguistic knowledge of pre-trained language models (PLMs) to facilitate the transfer of information from existing pre-labeled datasets (source-domain task) with minimum labeling effort on unlabeled target data (target-domain task). Our strategy can yield positive transfer achieving a mean AUC gain of 10.5% compared to no transfer with a large 22b parameter PLM. We further show that annotation of just a few target-domain samples via active learning can be beneficial for transfer, but the impact diminishes with more annotation effort (26% drop in gain between 100 and 2000 annotated examples). Finally, we find that not all transfer scenarios yield a positive gain, which seems related to the PLMs initial performance on the target-domain task.
Abstract:An increasingly common methodological issue in the field of social science is high-dimensional and highly correlated datasets that are unamenable to the traditional deductive framework of study. Analysis of candidate choice in the 2020 Presidential Election is one area in which this issue presents itself: in order to test the many theories explaining the outcome of the election, it is necessary to use data such as the 2020 Cooperative Election Study Common Content, with hundreds of highly correlated features. We present the Fuzzy Forests algorithm, a variant of the popular Random Forests ensemble method, as an efficient way to reduce the feature space in such cases with minimal bias, while also maintaining predictive performance on par with common algorithms like Random Forests and logit. Using Fuzzy Forests, we isolate the top correlates of candidate choice and find that partisan polarization was the strongest factor driving the 2020 presidential election.
Abstract:Tracking and collecting fast-evolving online discussions provides vast data for studying social media usage and its role in people's public lives. However, collecting social media data using a static set of keywords fails to satisfy the growing need to monitor dynamic conversations and to study fast-changing topics. We propose a dynamic keyword search method to maximize the coverage of relevant information in fast-evolving online discussions. The method uses word embedding models to represent the semantic relations between keywords and predictive models to forecast the future time series. We also implement a visual user interface to aid in the decision-making process in each round of keyword updates. This allows for both human-assisted tracking and fully-automated data collection. In simulations using historical #MeToo data in 2017, our human-assisted tracking method outperforms the traditional static baseline method significantly, with 37.1% higher F-1 score than traditional static monitors in tracking the top trending keywords. We conduct a contemporary case study to cover dynamic conversations about the recent Presidential Inauguration and to test the dynamic data collection system. Our case studies reflect the effectiveness of our process and also points to the potential challenges in future deployment.
Abstract:This paper proposes FREEtree, a tree-based method for high dimensional longitudinal data with correlated features. Popular machine learning approaches, like Random Forests, commonly used for variable selection do not perform well when there are correlated features and do not account for data observed over time. FREEtree deals with longitudinal data by using a piecewise random effects model. It also exploits the network structure of the features by first clustering them using weighted correlation network analysis, namely WGCNA. It then conducts a screening step within each cluster of features and a selection step among the surviving features, that provides a relatively unbiased way to select features. By using dominant principle components as regression variables at each leaf and the original features as splitting variables at splitting nodes, FREEtree maintains its interpretability and improves its computational efficiency. The simulation results show that FREEtree outperforms other tree-based methods in terms of prediction accuracy, feature selection accuracy, as well as the ability to recover the underlying structure.
Abstract:Online harassment is a significant social problem. Prevention of online harassment requires rapid detection of harassing, offensive, and negative social media posts. In this paper, we propose the use of word embedding models to identify offensive and harassing social media messages in two aspects: detecting fast-changing topics for more effective data collection and representing word semantics in different domains. We demonstrate with preliminary results that using the GloVe (Global Vectors for Word Representation) model facilitates the discovery of new and relevant keywords to use for data collection and trolling detection. Our paper concludes with a discussion of a research agenda to further develop and test word embedding models for identification of social media harassment and trolling.