UPC
Abstract:Human-Robot Collaboration (HRC) has evolved into a highly promising issue owing to the latest breakthroughs in Artificial Intelligence (AI) and Human-Robot Interaction (HRI), among other reasons. This emerging growth increases the need to design multi-agent algorithms that can manage also human preferences. This paper presents an extension of the Ant Colony Optimization (ACO) meta-heuristic to solve the Minimum Time Search (MTS) task, in the case where humans and robots perform an object searching task together. The proposed model consists of two main blocks. The first one is a convolutional neural network (CNN) that provides the prior probabilities about where an object may be from a segmented image. The second one is the Sub-prior MTS-ACO algorithm (SP-MTS-ACO), which takes as inputs the prior probabilities and the particular search preferences of the agents in different sub-priors to generate search plans for all agents. The model has been tested in real experiments for the joint search of an object through a Vizanti web-based visualization in a tablet computer. The designed interface allows the communication between a human and our humanoid robot named IVO. The obtained results show an improvement in the search perception of the users without loss of efficiency.
Abstract:Socially aware robot navigation is gaining popularity with the increase in delivery and assistive robots. The research is further fueled by a need for socially aware navigation skills in autonomous vehicles to move safely and appropriately in spaces shared with humans. Although most of these are ground robots, drones are also entering the field. In this paper, we present a literature survey of the works on socially aware robot navigation in the past 10 years. We propose four different faceted taxonomies to navigate the literature and examine the field from four different perspectives. Through the taxonomic review, we discuss the current research directions and the extending scope of applications in various domains. Further, we put forward a list of current research opportunities and present a discussion on possible future challenges that are likely to emerge in the field.
Abstract:Human motion trajectory prediction is a very important functionality for human-robot collaboration, specifically in accompanying, guiding, or approaching tasks, but also in social robotics, self-driving vehicles, or security systems. In this paper, a novel trajectory prediction model, Social Force Generative Adversarial Network (SoFGAN), is proposed. SoFGAN uses a Generative Adversarial Network (GAN) and Social Force Model (SFM) to generate different plausible people trajectories reducing collisions in a scene. Furthermore, a Conditional Variational Autoencoder (CVAE) module is added to emphasize the destination learning. We show that our method is more accurate in making predictions in UCY or BIWI datasets than most of the current state-of-the-art models and also reduces collisions in comparison to other approaches. Through real-life experiments, we demonstrate that the model can be used in real-time without GPU's to perform good quality predictions with a low computational cost.
Abstract:We propose a hierarchical framework for collaborative intelligent systems. This framework organizes research challenges based on the nature of the collaborative activity and the information that must be shared, with each level building on capabilities provided by lower levels. We review research paradigms at each level, with a description of classical engineering-based approaches and modern alternatives based on machine learning, illustrated with a running example using a hypothetical personal service robot. We discuss cross-cutting issues that occur at all levels, focusing on the problem of communicating and sharing comprehension, the role of explanation and the social nature of collaboration. We conclude with a summary of research challenges and a discussion of the potential for economic and societal impact provided by technologies that enhance human abilities and empower people and society through collaboration with Intelligent Systems.
Abstract:The navigation of robots in dynamic urban environments, requires elaborated anticipative strategies for the robot to avoid collisions with dynamic objects, like bicycles or pedestrians, and to be human aware. We have developed and analyzed three anticipative strategies in motion planning taking into account the future motion of the mobile objects that can move up to 18 km/h. First, we have used our hybrid policy resulting from a Deep Deterministic Policy Gradient (DDPG) training and the Social Force Model (SFM), and we have tested it in simulation in four complex map scenarios with many pedestrians. Second, we have used these anticipative strategies in real-life experiments using the hybrid motion planning method and the ROS Navigation Stack with Dynamic Windows Approach (NS-DWA). The results in simulations and real-life experiments show very good results in open environments and also in mixed scenarios with narrow spaces.
Abstract:Detection, segmentation and tracking of fruits and vegetables are three fundamental tasks for precision agriculture, enabling robotic harvesting and yield estimation applications. However, modern algorithms are data hungry and it is not always possible to gather enough data to apply the best performing supervised approaches. Since data collection is an expensive and cumbersome task, the enabling technologies for using computer vision in agriculture are often out of reach for small businesses. Following previous work in this context, where we proposed an initial weakly supervised solution to reduce the data needed to get state-of-the-art detection and segmentation in precision agriculture applications, here we improve that system and explore the problem of tracking fruits in orchards. We present the case of vineyards of table grapes in southern Lazio (Italy) since grapes are a difficult fruit to segment due to occlusion, color and general illumination conditions. We consider the case when there is some initial labelled data that could work as source data (e.g. wine grape data), but it is considerably different from the target data (e.g. table grape data). To improve detection and segmentation on the target data, we propose to train the segmentation algorithm with a weak bounding box label, while for tracking we leverage 3D Structure from Motion algorithms to generate new labels from already labelled samples. Finally, the two systems are combined in a full semi-supervised approach. Comparisons with SotA supervised solutions show how our methods are able to train new models that achieve high performances with few labelled images and with very simple labelling.
Abstract:This paper presents the design of deep learning architectures which allow to classify the social relationship existing between two people who are walking in a side-by-side formation into four possible categories --colleagues, couple, family or friendship. The models are developed using Neural Networks or Recurrent Neural Networks to achieve the classification and are trained and evaluated using a database of readings obtained from humans performing an accompaniment process in an urban environment. The best achieved model accomplishes a relatively good accuracy in the classification problem and its results enhance partially the outcomes from a previous study [1]. Furthermore, the model proposed shows its future potential to improve its efficiency and to be implemented in a real robot.
Abstract:In this work, we propose a gesture based language to allow humans to interact with robots using their body in a natural way. We have created a new gesture detection model using neural networks and a custom dataset of humans performing a set of body gestures to train our network. Furthermore, we compare body gesture communication with other communication channels to acknowledge the importance of adding this knowledge to robots. The presented approach is extensively validated in diverse simulations and real-life experiments with non-trained volunteers. This attains remarkable results and shows that it is a valuable framework for social robotics applications, such as human robot collaboration or human-robot interaction.
Abstract:In this work we argue that in Human-Robot Collaboration (HRC) tasks, the Perception-Action cycle in HRC tasks can not fully explain the collaborative behaviour of the human and robot and it has to be extended to Perception-Intention-Action cycle, where Intention is a key topic. In some cases, agent Intention can be perceived or inferred by the other agent, but in others, it has to be explicitly informed to the other agent to succeed the goal of the HRC task. The Perception-Intention-Action cycle includes three basic functional procedures: Perception-Intention, Situation Awareness and Action. The Perception and the Intention are the input of the Situation Awareness, which evaluates the current situation and projects it, into the future situation. The agents receive this information, plans and agree with the actions to be executed and modify their action roles while perform the HRC task. In this work, we validate the Perception-Intention-Action cycle in a joint object transportation task, modeling the Perception-Intention-Action cycle through a force model which uses real life and social forces. The perceived world is projected into a force world and the human intention (perceived or informed) is also modelled as a force that acts in the HRC task. Finally, we show that the action roles (master-slave, collaborative, neutral or adversary) are intrinsic to any HRC task and they appear in the different steps of a collaborative sequence of actions performed during the task.
Abstract:Recent advances in 3D human shape reconstruction from single images have shown impressive results, leveraging on deep networks that model the so-called implicit function to learn the occupancy status of arbitrarily dense 3D points in space. However, while current algorithms based on this paradigm, like PiFuHD, are able to estimate accurate geometry of the human shape and clothes, they require high-resolution input images and are not able to capture complex body poses. Most training and evaluation is performed on 1k-resolution images of humans standing in front of the camera under neutral body poses. In this paper, we leverage publicly available data to extend existing implicit function-based models to deal with images of humans that can have arbitrary poses and self-occluded limbs. We argue that the representation power of the implicit function is not sufficient to simultaneously model details of the geometry and of the body pose. We, therefore, propose a coarse-to-fine approach in which we first learn an implicit function that maps the input image to a 3D body shape with a low level of detail, but which correctly fits the underlying human pose, despite its complexity. We then learn a displacement map, conditioned on the smoothed surface and on the input image, which encodes the high-frequency details of the clothes and body. In the experimental section, we show that this coarse-to-fine strategy represents a very good trade-off between shape detail and pose correctness, comparing favorably to the most recent state-of-the-art approaches. Our code will be made publicly available.