Accurately forecasting long-term atmospheric variables remains a defining challenge in meteorological science due to the chaotic nature of atmospheric systems. Temperature data represents a complex superposition of deterministic cyclical climate forces and stochastic, short-term fluctuations. While planetary mechanics drive predictable seasonal periodicities, rapid meteorological changes such as thermal variations, pressure anomalies, and humidity shifts introduce nonlinear volatilities that defy simple extrapolation. Historically, the Seasonal Autoregressive Integrated Moving Average (SARIMA) model has been the standard for modeling historical weather data, prized for capturing linear seasonal trends. However, SARIMA operates under strict assumptions of stationarity, failing to capture abrupt, nonlinear transitions. This leads to systematic residual errors, manifesting as the under-prediction of sudden spikes or the over-smoothing of declines. Conversely, Deep Learning paradigms, specifically Long Short-Term Memory (LSTM) networks, demonstrate exceptional efficacy in handling intricate time-series data. By utilizing memory gates, LSTMs learn complex nonlinear dependencies. Yet, LSTMs face instability in open-loop forecasting; without ground truth feedback, minor deviations compound recursively, causing divergence. To resolve these limitations, we propose a Hybrid SARIMA-LSTM architecture. This framework employs a residual-learning strategy to decompose temperature into a predictable climate component and a nonlinear weather component. The SARIMA unit models the robust, long-term seasonal trend, while the LSTM is trained exclusively on the residuals the nonlinear errors SARIMA fails to capture. By fusing statistical stability with neural plasticity, this hybrid approach minimizes error propagation and enhances long-horizon accuracy.
This paper develops an approach for multi-step forecasting of dynamical systems by integrating probabilistic input forecasting with physics-informed output prediction. Accurate multi-step forecasting of time series systems is important for the automatic control and optimization of physical processes, enabling more precise decision-making. While mechanistic-based and data-driven machine learning (ML) approaches have been employed for time series forecasting, they face significant limitations. Incomplete knowledge of process mathematical models limits mechanistic-based direct employment, while purely data-driven ML models struggle with dynamic environments, leading to poor generalization. To address these limitations, this paper proposes a dual-level strategy for physics-informed forecasting of dynamical systems. On the first level, input variables are forecast using a hybrid method that integrates a long short-term memory (LSTM) network into probabilistic state transition models (STMs). On the second level, these stochastically predicted inputs are sequentially fed into a physics-informed neural network (PINN) to generate multi-step output predictions. The experimental results of the paper demonstrate that the hybrid input forecasting models achieve a higher log-likelihood and lower mean squared errors (MSE) compared to conventional STMs. Furthermore, the PINNs driven by the input forecasting models outperform their purely data-driven counterparts in terms of MSE and log-likelihood, exhibiting stronger generalization and forecasting performance across multiple test cases.
Drone light shows have emerged as a popular form of entertainment in recent years. However, several high-profile incidents involving large-scale drone failures -- where multiple drones simultaneously fall from the sky -- have raised safety and reliability concerns. To ensure robustness, we propose a drone parking algorithm designed specifically for multiple drone failures in drone light shows, aimed at mitigating the risk of cascading collisions by drone evacuation and enabling rapid recovery from failures by leveraging strategically placed hidden drones. Our algorithm integrates a Social LSTM model with attention mechanisms to predict the trajectories of failing drones and compute near-optimal evacuation paths that minimize the likelihood of surviving drones being hit by fallen drones. In the recovery node, our system deploys hidden drones (operating with their LED lights turned off) to replace failed drones so that the drone light show can continue. Our experiments showed that our approach can greatly increase the robustness of a multi-drone system by leveraging deep learning to predict the trajectories of fallen drones.
Robust hydrological simulation is key for sustainable development, water management strategies, and climate change adaptation. In recent years, deep learning methods have been demonstrated to outperform mechanistic models at the task of hydrological discharge simulation. Adoption of these methods has been catalysed by the proliferation of large sample hydrology datasets, consisting of the observed discharge and meteorological drivers, along with geological and topographical catchment descriptors. Deep learning methods infer rainfall-runoff characteristics that have been shown to generalise across catchments, benefitting from the data diversity in large datasets. Despite this, application to catchments in Africa has been limited. The lack of adoption of deep learning methodologies is primarily due to sparsity or lack of the spatiotemporal observational data required to enable downstream model training. We therefore investigate the application of deep learning models, including LSTMs, for hydrological discharge simulation in the transboundary Limpopo River basin, emphasising application to data scarce regions. We conduct a number of computational experiments primarily focused on assessing the impact of varying the LSTM model input data on performance. Results confirm that data constraints remain the largest obstacle to deep learning applications across African river basins. We further outline the impact of human influence on data-driven modelling which is a commonly overlooked aspect of data-driven large-sample hydrology approaches and investigate solutions for model adaptation under smaller datasets. Additionally, we include recommendations for future efforts towards seasonal hydrological discharge prediction and direct comparison or inclusion of SWAT model outputs, as well as architectural improvements.
Dominant sequence models like the Transformer represent structure implicitly through dense attention weights, incurring quadratic complexity. We propose RewriteNets, a novel neural architecture built on an alternative paradigm: explicit, parallel string rewriting. Each layer in a RewriteNet contains a set of learnable rules. For each position in an input sequence, the layer performs four operations: (1) fuzzy matching of rule patterns, (2) conflict resolution via a differentiable assignment operator to select non-overlapping rewrites, (3) application of the chosen rules to replace input segments with output segments of potentially different lengths, and (4) propagation of untouched tokens. While the discrete assignment of rules is non-differentiable, we employ a straight-through Gumbel-Sinkhorn estimator, enabling stable end-to-end training. We evaluate RewriteNets on algorithmic, compositional, and string manipulation tasks, comparing them against strong LSTM and Transformer baselines. Results show that RewriteNets excel at tasks requiring systematic generalization (achieving 98.7% accuracy on the SCAN benchmark's length split) and are computationally more efficient than Transformers. We also provide an analysis of learned rules and an extensive ablation study, demonstrating that this architecture presents a promising direction for sequence modeling with explicit structural inductive biases.
Inertial localization is particularly valuable in GPS-denied environments such as indoors. However, localization using only Inertial Measurement Units (IMUs) suffers from drift caused by motion-process noise and sensor biases. This paper introduces Uncertainty-aware Map-constrained Inertial Localization (UMLoc), an end-to-end framework that jointly models IMU uncertainty and map constraints to achieve drift-resilient positioning. UMLoc integrates two coupled modules: (1) a Long Short-Term Memory (LSTM) quantile regressor, which estimates the specific quantiles needed to define 68%, 90%, and 95% prediction intervals serving as a measure of localization uncertainty and (2) a Conditioned Generative Adversarial Network (CGAN) with cross-attention that fuses IMU dynamic data with distance-based floor-plan maps to generate geometrically feasible trajectories. The modules are trained jointly, allowing uncertainty estimates to propagate through the CGAN during trajectory generation. UMLoc was evaluated on three datasets, including a newly collected 2-hour indoor benchmark with time-aligned IMU data, ground-truth poses and floor-plan maps. Results show that the method achieves a mean drift ratio of 5.9% over a 70 m travel distance and an average Absolute Trajectory Error (ATE) of 1.36 m, while maintaining calibrated prediction bounds.
Accurate prediction of joint kinematics and kinetics is essential for advancing gait analysis and developing intelligent assistive systems such as prosthetics and exoskeletons. This study presents a hybrid LSTM-UKF framework for estimating ankle angle and ground reaction force (GRF) across varying walking speeds. A multimodal sensor fusion strategy integrates force plate data, knee angle, and GRF signals to enrich biomechanical context. Model performance was evaluated using RMSE and $R^2$ under subject-specific validation. The LSTM-UKF consistently outperformed standalone LSTM and UKF models, achieving up to 18.6\% lower RMSE for GRF prediction at 3 km/h. Additionally, UKF integration improved robustness, reducing ankle angle RMSE by up to 22.4\% compared to UKF alone at 1 km/h. These results underscore the effectiveness of hybrid architectures for reliable gait prediction across subjects and walking conditions.
Diffusion models have emerged as a powerful method in various applications. However, their application to Short-Term Electricity Load Forecasting (STELF) -- a typical scenario in energy systems -- remains largely unexplored. Considering the nonlinear and fluctuating characteristics of the load data, effectively utilizing the powerful modeling capabilities of diffusion models to enhance STELF accuracy remains a challenge. This paper proposes a novel diffusion model with multi-frequency reconstruction for STELF, referred to as the Multi-Frequency-Reconstruction-based Diffusion (MFRD) model. The MFRD model achieves accurate load forecasting through four key steps: (1) The original data is combined with the decomposed multi-frequency modes to form a new data representation; (2) The diffusion model adds noise to the new data, effectively reducing and weakening the noise in the original data; (3) The reverse process adopts a denoising network that combines Long Short-Term Memory (LSTM) and Transformer to enhance noise removal; and (4) The inference process generates the final predictions based on the trained denoising network. To validate the effectiveness of the MFRD model, we conducted experiments on two data platforms: Australian Energy Market Operator (AEMO) and Independent System Operator of New England (ISO-NE). The experimental results show that our model consistently outperforms the compared models.
Consumer-grade biosensors offer a cost-effective alternative to medical-grade electromyography (EMG) systems, reducing hardware costs from thousands of dollars to approximately $13. However, these low-cost sensors introduce significant signal instability and motion artifacts. Deploying machine learning models on resource-constrained edge devices like the ESP32 presents a challenge: balancing classification accuracy with strict latency (<100ms) and memory (<320KB) constraints. Using a single-subject dataset comprising 1,540 seconds of raw data (1.54M data points, segmented into ~1,300 one-second windows), I evaluate 18 model architectures, ranging from statistical heuristics to deep transfer learning (ResNet50) and custom hybrid networks (MaxCRNN). While my custom "MaxCRNN" (Inception + Bi-LSTM + Attention) achieved the highest safety (99% Precision) and robustness, I identify Random Forest (74% accuracy) as the Pareto-optimal solution for embedded control on legacy microcontrollers. I demonstrate that reliable, low-latency EMG control is feasible on commodity hardware, with Deep Learning offering a path to near-perfect reliability on modern Edge AI accelerators.
The rapid deployment of Internet of Things (IoT) devices has led to large-scale sensor networks that monitor environmental and urban phenomena in real time. Communities of Interest (CoIs) provide a promising paradigm for organising heterogeneous IoT sensor networks by grouping devices with similar operational and environmental characteristics. This work presents an anomaly detection framework based on the CoI paradigm by grouping sensors into communities using a fused similarity matrix that incorporates temporal correlations via Spearman coefficients, spatial proximity using Gaussian distance decay, and elevation similarities. For each community, representative stations based on the best silhouette are selected and three autoencoder architectures (BiLSTM, LSTM, and MLP) are trained using Bayesian hyperparameter optimization with expanding window cross-validation and tested on stations from the same cluster and the best representative stations of other clusters. The models are trained on normal temperature patterns of the data and anomalies are detected through reconstruction error analysis. Experimental results show a robust within-community performance across the evaluated configurations, while variations across communities are observed. Overall, the results support the applicability of community-based model sharing in reducing computational overhead and to analyse model generalisability across IoT sensor networks.