Sep 10, 2025
Abstract:Purpose: We compared the performance of deep learning (DL) and classical machine learning (ML) algorithms for the classification of 24-hour movement behavior into sleep, sedentary, light intensity physical activity (LPA), and moderate-to-vigorous intensity physical activity (MVPA). Methods: Open-access data from 151 adults wearing a wrist-worn accelerometer (Axivity-AX3) was used. Participants were randomly divided into training, validation, and test sets (121, 15, and 15 participants each). Raw acceleration signals were segmented into non-overlapping 10-second windows, and then a total of 104 handcrafted features were extracted. Four DL algorithms-Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Units (GRU), and One-Dimensional Convolutional Neural Network (1D-CNN)-were trained using raw acceleration signals and with handcrafted features extracted from these signals to predict 24-hour movement behavior categories. The handcrafted features were also used to train classical ML algorithms, namely Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Artificial Neural Network (ANN), and Decision Tree (DT) for classifying 24-hour movement behavior intensities. Results: LSTM, BiLSTM, and GRU showed an overall accuracy of approximately 85% when trained with raw acceleration signals, and 1D-CNN an overall accuracy of approximately 80%. When trained on handcrafted features, the overall accuracy for both DL and classical ML algorithms ranged from 70% to 81%. Overall, there was a higher confusion in classification of MVPA and LPA, compared to sleep and sedentary categories. Conclusion: DL methods with raw acceleration signals had only slightly better performance in predicting 24-hour movement behavior intensities, compared to when DL and classical ML were trained with handcrafted features.
Via
