Abstract:Vehicle detection in Unmanned Aerial Vehicle (UAV) captured images has wide applications in aerial photography and remote sensing. There are many public benchmark datasets proposed for the vehicle detection and tracking in UAV images. Recent studies show that adding an adversarial patch on objects can fool the well-trained deep neural networks based object detectors, posing security concerns to the downstream tasks. However, the current public UAV datasets might ignore the diverse altitudes, vehicle attributes, fine-grained instance-level annotation in mostly side view with blurred vehicle roof, so none of them is good to study the adversarial patch based vehicle detection attack problem. In this paper, we propose a new dataset named EVD4UAV as an altitude-sensitive benchmark to evade vehicle detection in UAV with 6,284 images and 90,886 fine-grained annotated vehicles. The EVD4UAV dataset has diverse altitudes (50m, 70m, 90m), vehicle attributes (color, type), fine-grained annotation (horizontal and rotated bounding boxes, instance-level mask) in top view with clear vehicle roof. One white-box and two black-box patch based attack methods are implemented to attack three classic deep neural networks based object detectors on EVD4UAV. The experimental results show that these representative attack methods could not achieve the robust altitude-insensitive attack performance.
Abstract:Detecting the salient objects in a remote sensing image has wide applications for the interdisciplinary research. Many existing deep learning methods have been proposed for Salient Object Detection (SOD) in remote sensing images and get remarkable results. However, the recent adversarial attack examples, generated by changing a few pixel values on the original remote sensing image, could result in a collapse for the well-trained deep learning based SOD model. Different with existing methods adding perturbation to original images, we propose to jointly tune adversarial exposure and additive perturbation for attack and constrain image close to cloudy image as Adversarial Cloud. Cloud is natural and common in remote sensing images, however, camouflaging cloud based adversarial attack and defense for remote sensing images are not well studied before. Furthermore, we design DefenseNet as a learn-able pre-processing to the adversarial cloudy images so as to preserve the performance of the deep learning based remote sensing SOD model, without tuning the already deployed deep SOD model. By considering both regular and generalized adversarial examples, the proposed DefenseNet can defend the proposed Adversarial Cloud in white-box setting and other attack methods in black-box setting. Experimental results on a synthesized benchmark from the public remote sensing SOD dataset (EORSSD) show the promising defense against adversarial cloud attacks.
Abstract:Image Super-Resolution (ISR), which aims at recovering High-Resolution (HR) images from the corresponding Low-Resolution (LR) counterparts. Although recent progress in ISR has been remarkable. However, they are way too computationally intensive to be deployed on edge devices, since most of the recent approaches are deep learning-based. Besides, these methods always fail in real-world scenes, since most of them adopt a simple fixed "ideal" bicubic downsampling kernel from high-quality images to construct LR/HR training pairs which may lose track of frequency-related details. In this work, an approach for real-time ISR on mobile devices is presented, which is able to deal with a wide range of degradations in real-world scenarios. Extensive experiments on traditional super-resolution datasets (Set5, Set14, BSD100, Urban100, Manga109, DIV2K) and real-world images with a variety of degradations demonstrate that our method outperforms the state-of-art methods, resulting in higher PSNR and SSIM, lower noise and better visual quality. Most importantly, our method achieves real-time performance on mobile or edge devices.
Abstract:Restoring and inpainting the visual memories that are present, but often impaired, in old photos remains an intriguing but unsolved research topic. Decades-old photos often suffer from severe and commingled degradation such as cracks, defocus, and color-fading, which are difficult to treat individually and harder to repair when they interact. Deep learning presents a plausible avenue, but the lack of large-scale datasets of old photos makes addressing this restoration task very challenging. Here we present a novel reference-based end-to-end learning framework that is able to both repair and colorize old and degraded pictures. Our proposed framework consists of three modules: a restoration sub-network that conducts restoration from degradations, a similarity sub-network that performs color histogram matching and color transfer, and a colorization subnet that learns to predict the chroma elements of images that have been conditioned on chromatic reference signals. The overall system makes use of color histogram priors from reference images, which greatly reduces the need for large-scale training data. We have also created a first-of-a-kind public dataset of real old photos that are paired with ground truth "pristine" photos that have been that have been manually restored by PhotoShop experts. We conducted extensive experiments on this dataset and synthetic datasets, and found that our method significantly outperforms previous state-of-the-art models using both qualitative comparisons and quantitative measurements.
Abstract:Renovating the memories in old photos is an intriguing research topic in computer vision fields. These legacy images often suffer from severe and commingled degradations such as cracks, noise, and color-fading, while lack of large-scale paired old photo datasets makes this restoration task very challenging. In this work, we present a novel reference-based end-to-end learning framework that can jointly repair and colorize the degraded legacy pictures. Specifically, the proposed framework consists of three modules: a restoration sub-network for degradation restoration, a similarity sub-network for color histogram matching and transfer, and a colorization subnet that learns to predict the chroma elements of the images conditioned on chromatic reference signals. The whole system takes advantage of the color histogram priors in a given reference image, which vastly reduces the dependency on large-scale training data. Apart from the proposed method, we also create, to our knowledge, the first public and real-world old photo dataset with paired ground truth for evaluating old photo restoration models, wherein each old photo is paired with a manually restored pristine image by PhotoShop experts. Our extensive experiments conducted on both synthetic and real-world datasets demonstrate that our method significantly outperforms state-of-the-arts both quantitatively and qualitatively.
Abstract:Video super-resolution has recently become one of the most important mobile-related problems due to the rise of video communication and streaming services. While many solutions have been proposed for this task, the majority of them are too computationally expensive to run on portable devices with limited hardware resources. To address this problem, we introduce the first Mobile AI challenge, where the target is to develop an end-to-end deep learning-based video super-resolution solutions that can achieve a real-time performance on mobile GPUs. The participants were provided with the REDS dataset and trained their models to do an efficient 4X video upscaling. The runtime of all models was evaluated on the OPPO Find X2 smartphone with the Snapdragon 865 SoC capable of accelerating floating-point networks on its Adreno GPU. The proposed solutions are fully compatible with any mobile GPU and can upscale videos to HD resolution at up to 80 FPS while demonstrating high fidelity results. A detailed description of all models developed in the challenge is provided in this paper.
Abstract:This paper reviews the AIM 2020 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The challenge task was to super-resolve an input image with a magnification factor x4 based on a set of prior examples of low and corresponding high resolution images. The goal is to devise a network that reduces one or several aspects such as runtime, parameter count, FLOPs, activations, and memory consumption while at least maintaining PSNR of MSRResNet. The track had 150 registered participants, and 25 teams submitted the final results. They gauge the state-of-the-art in efficient single image super-resolution.
Abstract:It is extremely challenging to acquire perceptually plausible images under low-light conditions due to low SNR. Most recently, U-Nets have shown promising results for low-light imaging. However, vanilla U-Nets generate images with artifacts such as color inconsistency due to the lack of global color information. In this paper, we propose a global information aware (GIA) module, which is capable of extracting and integrating the global information into the network to improve the performance of low-light imaging. The GIA module can be inserted into a vanilla U-Net with negligible extra learnable parameters or computational cost. Moreover, a GIA-Net is constructed, trained and evaluated on a large scale real-world low-light imaging dataset. Experimental results show that the proposed GIA-Net outperforms the state-of-the-art methods in terms of four metrics, including deep metrics that measure perceptual similarities. Extensive ablation studies have been conducted to verify the effectiveness of the proposed GIA-Net for low-light imaging by utilizing global information.
Abstract:In this paper, the Point Adversarial Self Mining (PASM) approach, a simple yet effective way to progressively mine knowledge from training samples, is proposed to produce training data for CNNs to improve the performance and network generality in Facial Expression Recognition (FER) task. In order to achieve a high prediction accuracy under real-world scenarios, most of the existing works choose to manipulate the network architectures and design sophisticated loss terms. Although demonstrated to be effective in real scenarios, those aforementioned methods require extra efforts in network design. Inspired by random erasing and adversarial erasing, we propose PASM for data augmentation, simulating the data distribution in the wild. Specifically, given a sample and a pre-trained network, our proposed approach locates the informative region in the sample generated by point adversarial attack policy. The informative region is highly structured and sparse. Comparing to the regions produced by random erasing which selects the region in a purely random way and adversarial erasing which operates by attention maps, the located informative regions obtained by PASM are more adaptive and better aligned with the previous findings: not all but only a few facial regions contribute to the accurate prediction. Then, the located informative regions are masked out from the original samples to generate augmented images, which would force the network to explore additional information from other less informative regions. The augmented images are used to finetune the network to enhance its generality. In the refinement process, we take advantage of knowledge distillation, utilizing the pre-trained network to provide guidance and retain knowledge from old samples to train a new network with the same structural configuration.
Abstract:In this paper, we target on advancing the performance in facial expression recognition (FER) by exploiting omni-supervised learning. The current state of the art FER approaches usually aim to recognize facial expressions in a controlled environment by training models with a limited number of samples. To enhance the robustness of the learned models for various scenarios, we propose to perform omni-supervised learning by exploiting the labeled samples together with a large number of unlabeled data. Particularly, we first employ MS-Celeb-1M as the facial-pool where around 5,822K unlabeled facial images are included. Then, a primitive model learned on a small number of labeled samples is adopted to select samples with high confidence from the facial-pool by conducting feature-based similarity comparison. We find the new dataset constructed in such an omni-supervised manner can significantly improve the generalization ability of the learned FER model and boost the performance consequently. However, as more training samples are used, more computation resources and training time are required, which is usually not affordable in many circumstances. To relieve the requirement of computational resources, we further adopt a dataset distillation strategy to distill the target task-related knowledge from the new mined samples and compressed them into a very small set of images. This distilled dataset is capable of boosting the performance of FER with few additional computational cost introduced. We perform extensive experiments on five popular benchmarks and a newly constructed dataset, where consistent gains can be achieved under various settings using the proposed framework. We hope this work will serve as a solid baseline and help ease future research in FER.