Abstract:We propose "collision cross-entropy" as a robust alternative to the Shannon's cross-entropy in the context of self-labeled classification with posterior models. Assuming unlabeled data, self-labeling works by estimating latent pseudo-labels, categorical distributions y, that optimize some discriminative clustering criteria, e.g. "decisiveness" and "fairness". All existing self-labeled losses incorporate Shannon's cross-entropy term targeting the model prediction, softmax, at the estimated distribution y. In fact, softmax is trained to mimic the uncertainty in y exactly. Instead, we propose the negative log-likelihood of "collision" to maximize the probability of equality between two random variables represented by distributions softmax and y. We show that our loss satisfies some properties of a generalized cross-entropy. Interestingly, it agrees with the Shannon's cross-entropy for one-hot pseudo-labels y, but the training from softer labels weakens. For example, if y is a uniform distribution at some data point, it has zero contribution to the training. Our self-labeling loss combining collision cross entropy with basic clustering criteria is convex w.r.t. pseudo-labels, but non-trivial to optimize over the probability simplex. We derive a practical EM algorithm optimizing pseudo-labels y significantly faster than generic methods, e.g. the projectile gradient descent. The collision cross-entropy consistently improves the results on multiple self-labeled clustering examples using different DNNs.
Abstract:Maximization of mutual information between the model's input and output is formally related to "decisiveness" and "fairness" of the softmax predictions, motivating such unsupervised entropy-based losses for discriminative neural networks. Recent self-labeling methods based on such losses represent the state of the art in deep clustering. However, some important properties of entropy clustering are not well-known, or even misunderstood. For example, we provide a counterexample to prior claims about equivalence to variance clustering (K-means) and point out technical mistakes in such theories. We discuss the fundamental differences between these discriminative and generative clustering approaches. Moreover, we show the susceptibility of standard entropy clustering to narrow margins and motivate an explicit margin maximization term. We also propose an improved self-labeling loss; it is robust to pseudo-labeling errors and enforces stronger fairness. We develop an EM algorithm for our loss that is significantly faster than the standard alternatives. Our results improve the state-of-the-art on standard benchmarks.
Abstract:Acquisition of training data for the standard semantic segmentation is expensive if requiring that each pixel is labeled. Yet, current methods significantly deteriorate in weakly supervised settings, e.g. where a fraction of pixels is labeled or when only image-level tags are available. It has been shown that regularized losses - originally developed for unsupervised low-level segmentation and representing geometric priors on pixel labels - can considerably improve the quality of weakly supervised training. However, many common priors require optimization stronger than gradient descent. Thus, such regularizers have limited applicability in deep learning. We propose a new robust trust region approach for regularized losses improving the state-of-the-art results. Our approach can be seen as a higher-order generalization of the classic chain rule. It allows neural network optimization to use strong low-level solvers for the corresponding regularizers, including discrete ones.
Abstract:We are interested in unsupervised reconstruction of complex near-capillary vasculature with thousands of bifurcations where supervision and learning are infeasible. Unsupervised methods can use many structural constraints, e.g. topology, geometry, physics. Common techniques use variants of MST on geodesic tubular graphs minimizing symmetric pairwise costs, i.e. distances. We show limitations of such standard undirected tubular graphs producing typical errors at bifurcations where flow "directedness" is critical. We introduce a new general concept of confluence for continuous oriented curves forming vessel trees and show how to enforce it on discrete tubular graphs. While confluence is a high-order property, we present an efficient practical algorithm for reconstructing confluent vessel trees using minimum arborescence on a directed graph enforcing confluence via simple flow-extrapolating arc construction. Empirical tests on large near-capillary sub-voxel vasculature volumes demonstrate significantly improved reconstruction accuracy at bifurcations. Our code has also been made publicly available.
Abstract:We propose a novel efficient and lightweight model for human pose estimation from a single image. Our model is designed to achieve competitive results at a fraction of the number of parameters and computational cost of various state-of-the-art methods. To this end, we explicitly incorporate part-based structural and geometric priors in a hierarchical prediction framework. At the coarsest resolution, and in a manner similar to classical part-based approaches, we leverage the kinematic structure of the human body to propagate convolutional feature updates between the keypoints or body parts. Unlike classical approaches, we adopt end-to-end training to learn this geometric prior through feature updates from data. We then propagate the feature representation at the coarsest resolution up the hierarchy to refine the predicted pose in a coarse-to-fine fashion. The final network effectively models the geometric prior and intuition within a lightweight deep neural network, yielding state-of-the-art results for a model of this size on two standard datasets, Leeds Sports Pose and MPII Human Pose.
Abstract:Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
Abstract:Many automated processes such as auto-piloting rely on a good semantic segmentation as a critical component. To speed up performance, it is common to downsample the input frame. However, this comes at the cost of missed small objects and reduced accuracy at semantic boundaries. To address this problem, we propose a new content-adaptive downsampling technique that learns to favor sampling locations near semantic boundaries of target classes. Cost-performance analysis shows that our method consistently outperforms the uniform sampling improving balance between accuracy and computational efficiency. Our adaptive sampling gives segmentation with better quality of boundaries and more reliable support for smaller-size objects.
Abstract:We propose a new geometric regularization principle for reconstructing vector fields based on prior knowledge about their divergence. As one important example of this general idea, we focus on vector fields modelling blood flow pattern that should be divergent in arteries and convergent in veins. We show that this previously ignored regularization constraint can significantly improve the quality of vessel tree reconstruction particularly around bifurcations where non-zero divergence is concentrated. Our divergence prior is critical for resolving (binary) sign ambiguity in flow orientations produced by standard vessel filters, e.g. Frangi. Our vessel tree centerline reconstruction combines divergence constraints with robust curvature regularization. Our unsupervised method can reconstruct complete vessel trees with near-capillary details on synthetic and real 3D volumes.
Abstract:Variants of gradient descent (GD) dominate CNN loss minimization in computer vision. But, as we show, some powerful loss functions are practically useless only due to their poor optimization by GD. In the context of weakly-supervised CNN segmentation, we present a general ADM approach to regularized losses, which are inspired by well-known MRF/CRF models in "shallow" segmentation. While GD fails on the popular nearest-neighbor Potts loss, ADM splitting with $\alpha$-expansion solver significantly improves optimization of such grid CRF losses yielding state-of-the-art training quality. Denser CRF losses become amenable to basic GD, but they produce lower quality object boundaries in agreement with known noisy performance of dense CRF inference in shallow segmentation.
Abstract:Weak supervision, e.g., in the form of partial labels or image tags, is currently attracting significant attention in CNN segmentation as it can mitigate the lack of full and laborious pixel/voxel annotations. Enforcing high-order (global) inequality constraints on the network output, for instance, on the size of the target region, can leverage unlabeled data, guiding training with domain-specific knowledge. Inequality constraints are very flexible because they do not assume exact prior knowledge. However,constrained Lagrangian dual optimization has been largely avoided in deep networks, mainly for computational tractability reasons.To the best of our knowledge, the method of Pathak et al. is the only prior work that addresses deep CNNs with linear constraints in weakly supervised segmentation. It uses the constraints to synthesize fully-labeled training masks (proposals)from weak labels, mimicking full supervision and facilitating dual optimization.We propose to introduce a differentiable term, which enforces inequality constraints directly in the loss function, avoiding expensive Lagrangian dual iterates and proposal generation. From constrained-optimization perspective, our simple approach is not optimal as there is no guarantee that the constraints are satisfied. However, surprisingly,it yields substantially better results than the proposal-based constrained CNNs, while reducing the computational demand for training.In the context of cardiac images, we reached a segmentation performance close to full supervision using a fraction (0.1%) of the full ground-truth labels and image-level tags.While our experiments focused on basic linear constraints such as the target-region size and image tags, our framework can be easily extended to other non-linear constraints.Therefore, it has the potential to close the gap between weakly and fully supervised learning in semantic image segmentation.