Abstract:Recent studies show that well-devised perturbations on graph structures or node features can mislead trained Graph Neural Network (GNN) models. However, these methods often overlook practical assumptions, over-rely on heuristics, or separate vital attack components. In response, we present GAIM, an integrated adversarial attack method conducted on a node feature basis while considering the strict black-box setting. Specifically, we define an adversarial influence function to theoretically assess the adversarial impact of node perturbations, thereby reframing the GNN attack problem into the adversarial influence maximization problem. In our approach, we unify the selection of the target node and the construction of feature perturbations into a single optimization problem, ensuring a unique and consistent feature perturbation for each target node. We leverage a surrogate model to transform this problem into a solvable linear programming task, streamlining the optimization process. Moreover, we extend our method to accommodate label-oriented attacks, broadening its applicability. Thorough evaluations on five benchmark datasets across three popular models underscore the effectiveness of our method in both untargeted and label-oriented targeted attacks. Through comprehensive analysis and ablation studies, we demonstrate the practical value and efficacy inherent to our design choices.
Abstract:The learning objective is integral to collaborative filtering systems, where the Bayesian Personalized Ranking (BPR) loss is widely used for learning informative backbones. However, BPR often experiences slow convergence and suboptimal local optima, partially because it only considers one negative item for each positive item, neglecting the potential impacts of other unobserved items. To address this issue, the recently proposed Sampled Softmax Cross-Entropy (SSM) compares one positive sample with multiple negative samples, leading to better performance. Our comprehensive experiments confirm that recommender systems consistently benefit from multiple negative samples during training. Furthermore, we introduce a \underline{Sim}plified Sampled Softmax \underline{C}ross-\underline{E}ntropy Loss (SimCE), which simplifies the SSM using its upper bound. Our validation on 12 benchmark datasets, using both MF and LightGCN backbones, shows that SimCE significantly outperforms both BPR and SSM.
Abstract:Recommender systems (RSs) have gained widespread applications across various domains owing to the superior ability to capture users' interests. However, the complexity and nuanced nature of users' interests, which span a wide range of diversity, pose a significant challenge in delivering fair recommendations. In practice, user preferences vary significantly; some users show a clear preference toward certain item categories, while others have a broad interest in diverse ones. Even though it is expected that all users should receive high-quality recommendations, the effectiveness of RSs in catering to this disparate interest diversity remains under-explored. In this work, we investigate whether users with varied levels of interest diversity are treated fairly. Our empirical experiments reveal an inherent disparity: users with broader interests often receive lower-quality recommendations. To mitigate this, we propose a multi-interest framework that uses multiple (virtual) interest embeddings rather than single ones to represent users. Specifically, the framework consists of stacked multi-interest representation layers, which include an interest embedding generator that derives virtual interests from shared parameters, and a center embedding aggregator that facilitates multi-hop aggregation. Experiments demonstrate the effectiveness of the framework in achieving better trade-off between fairness and utility across various datasets and backbones.
Abstract:Transformer and its variants are a powerful class of architectures for sequential recommendation, owing to their ability of capturing a user's dynamic interests from their past interactions. Despite their success, Transformer-based models often require the optimization of a large number of parameters, making them difficult to train from sparse data in sequential recommendation. To address the problem of data sparsity, previous studies have utilized self-supervised learning to enhance Transformers, such as pre-training embeddings from item attributes or contrastive data augmentations. However, these approaches encounter several training issues, including initialization sensitivity, manual data augmentations, and large batch-size memory bottlenecks. In this work, we investigate Transformers from the perspective of loss geometry, aiming to enhance the models' data efficiency and generalization in sequential recommendation. We observe that Transformers (e.g., SASRec) can converge to extremely sharp local minima if not adequately regularized. Inspired by the recent Sharpness-Aware Minimization (SAM), we propose SAMRec, which significantly improves the accuracy and robustness of sequential recommendation. SAMRec performs comparably to state-of-the-art self-supervised Transformers, such as S$^3$Rec and CL4SRec, without the need for pre-training or strong data augmentations.