Abstract:Experimental evaluations of software engineering innovations, e.g., tools and processes, often include human-subject studies as a component of a multi-pronged strategy to obtain greater generalizability of the findings. However, human-subject studies in our field are challenging, due to the cost and difficulty of finding and employing suitable subjects, ideally, professional programmers with varying degrees of experience. Meanwhile, large language models (LLMs) have recently started to demonstrate human-level performance in several areas. This paper explores the possibility of substituting costly human subjects with much cheaper LLM queries in evaluations of code and code-related artifacts. We study this idea by applying six state-of-the-art LLMs to ten annotation tasks from five datasets created by prior work, such as judging the accuracy of a natural language summary of a method or deciding whether a code change fixes a static analysis warning. Our results show that replacing some human annotation effort with LLMs can produce inter-rater agreements equal or close to human-rater agreement. To help decide when and how to use LLMs in human-subject studies, we propose model-model agreement as a predictor of whether a given task is suitable for LLMs at all, and model confidence as a means to select specific samples where LLMs can safely replace human annotators. Overall, our work is the first step toward mixed human-LLM evaluations in software engineering.
Abstract:Large language models (LLMs) have provided a lot of exciting new capabilities in software development. However, the opaque nature of these models makes them difficult to reason about and inspect. Their opacity gives rise to potential security risks, as adversaries can train and deploy compromised models to disrupt the software development process in the victims' organization. This work presents an overview of the current state-of-the-art trojan attacks on large language models of code, with a focus on triggers -- the main design point of trojans -- with the aid of a novel unifying trigger taxonomy framework. We also aim to provide a uniform definition of the fundamental concepts in the area of trojans in Code LLMs. Finally, we draw implications of findings on how code models learn on trigger design.
Abstract:A good summary can often be very useful during program comprehension. While a brief, fluent, and relevant summary can be helpful, it does require significant human effort to produce. Often, good summaries are unavailable in software projects, thus making maintenance more difficult. There has been a considerable body of research into automated AI-based methods, using Large Language models (LLMs), to generate summaries of code; there also has been quite a bit work on ways to measure the performance of such summarization methods, with special attention paid to how closely these AI-generated summaries resemble a summary a human might have produced. Measures such as BERTScore and BLEU have been suggested and evaluated with human-subject studies. However, LLMs often err and generate something quite unlike what a human might say. Given an LLM-produced code summary, is there a way to gauge whether it's likely to be sufficiently similar to a human produced summary, or not? In this paper, we study this question, as a calibration problem: given a summary from an LLM, can we compute a confidence measure, which is a good indication of whether the summary is sufficiently similar to what a human would have produced in this situation? We examine this question using several LLMs, for several languages, and in several different settings. We suggest an approach which provides well-calibrated predictions of likelihood of similarity to human summaries.
Abstract:Large Language models (LLMs) are finding wide use in software engineering practice. These models are extremely data-hungry, and are largely trained on open-source (OSS) code distributed with permissive licenses. In terms of actual use however, a great deal of software development still occurs in the for-profit/proprietary sphere, where the code under development is not, and never has been, in the public domain; thus, many developers, do their work, and use LLMs, in settings where the models may not be as familiar with the code under development. In such settings, do LLMs work as well as they do for OSS code? If not, what are the differences? When performance differs, what are the possible causes, and are there work-arounds? In this paper, we examine this issue using proprietary, closed-source software data from Microsoft, where most proprietary code is in C# and C++. We find that performance for C# changes little from OSS --> proprietary code, but does significantly reduce for C++; we find that this difference is attributable to differences in identifiers. We also find that some performance degradation, in some cases, can be ameliorated efficiently by in-context learning.
Abstract:Machine learning models are widely used but can also often be wrong. Users would benefit from a reliable indication of whether a given output from a given model should be trusted, so a rational decision can be made whether to use the output or not. For example, outputs can be associated with a confidence measure; if this confidence measure is strongly associated with likelihood of correctness, then the model is said to be well-calibrated. In this case, for example, high-confidence outputs could be safely accepted, and low-confidence outputs rejected. Calibration has so far been studied in non-generative (e.g., classification) settings, especially in Software Engineering. However, generated code can quite often be wrong: Developers need to know when they should e.g., directly use, use after careful review, or discard model-generated code; thus Calibration is vital in generative settings. However, the notion of correctness of generated code is non-trivial, and thus so is Calibration. In this paper we make several contributions. We develop a framework for evaluating the Calibration of code-generating models. We consider several tasks, correctness criteria, datasets, and approaches, and find that by and large generative code models are not well-calibrated out of the box. We then show how Calibration can be improved, using standard methods such as Platt scaling. Our contributions will lead to better-calibrated decision-making in the current use of code generated by language models, and offers a framework for future research to further improve calibration methods for generative models in Software Engineering.
Abstract:Pre-trained language models are effective in a variety of natural language tasks, but it has been argued their capabilities fall short of fully learning meaning or understanding language. To understand the extent to which language models can learn some form of meaning, we investigate their ability to capture semantics of code beyond superficial frequency and co-occurrence. In contrast to previous research on probing models for linguistic features, we study pre-trained models in a setting that allows for objective and straightforward evaluation of a model's ability to learn semantics. In this paper, we examine whether such models capture the semantics of code, which is precisely and formally defined. Through experiments involving the manipulation of code fragments, we show that code pre-trained models of code learn a robust representation of the computational semantics of code that goes beyond superficial features of form alone
Abstract:Large Language models (LLMs) can be induced to solve non-trivial problems with "few-shot" prompts including illustrative problem-solution examples. Now if the few-shots also include "chain of thought" (CoT) explanations, which are of the form problem-explanation-solution, LLMs will generate a "explained" solution, and perform even better. Recently an exciting, substantially better technique, self-consistency [1] (S-C) has emerged, based on the intuition that there are many plausible explanations for the right solution; when the LLM is sampled repeatedly to generate a pool of explanation-solution pairs, for a given problem, the most frequently occurring solutions in the pool (ignoring the explanations) tend to be even more likely to be correct! Unfortunately, the use of this highly-performant S-C (or even CoT) approach in software engineering settings is hampered by the lack of explanations; most software datasets lack explanations. In this paper, we describe an application of the S-C approach to program repair, using the commit log on the fix as the explanation, only in the illustrative few-shots. We achieve state-of-the art results, beating previous approaches to prompting-based program repair, on the MODIT dataset; we also find evidence suggesting that the correct commit messages are helping the LLM learn to produce better patches.
Abstract:Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU.
Abstract:With the advent of powerful neural language models, AI-based systems to assist developers in coding tasks are becoming widely available; Copilot is one such system. Copilot uses Codex, a large language model (LLM), to complete code conditioned on a preceding "prompt". Codex, however, is trained on public GitHub repositories, viz., on code that may include bugs and vulnerabilities. Previous studies [1], [2] show Codex reproduces vulnerabilities seen in training. In this study, we examine how prone Codex is to generate an interesting bug category, single statement bugs, commonly referred to as simple, stupid bugs or SStuBs in the MSR community. We find that Codex and similar LLMs do help avoid some SStuBs, but do produce known, verbatim SStuBs as much as 2x as likely than known, verbatim correct code. We explore the consequences of the Codex generated SStuBs and propose avoidance strategies that suggest the possibility of reducing the production of known, verbatim SStubs, and increase the possibility of producing known, verbatim fixes.
Abstract:Reverse engineering binaries is required to understand and analyse programs for which the source code is unavailable. Decompilers can transform the largely unreadable binaries into a more readable source code-like representation. However, reverse engineering is time-consuming, much of which is taken up by labelling the functions with semantic information. While the automated summarisation of decompiled code can help Reverse Engineers understand and analyse binaries, current work mainly focuses on summarising source code, and no suitable dataset exists for this task. In this work, we extend large pre-trained language models of source code to summarise decompiled binary functions. Furthermore, we investigate the impact of input and data properties on the performance of such models. Our approach consists of two main components; the data and the model. We first build CAPYBARA, a dataset of 214K decompiled function-documentation pairs across various compiler optimisations. We extend CAPYBARA further by generating synthetic datasets and deduplicating the data. Next, we fine-tune the CodeT5 base model with CAPYBARA to create BinT5. BinT5 achieves the state-of-the-art BLEU-4 score of 60.83, 58.82, and 44.21 for summarising source, decompiled, and synthetically stripped decompiled code, respectively. This indicates that these models can be extended to decompiled binaries successfully. Finally, we found that the performance of BinT5 is not heavily dependent on the dataset size and compiler optimisation level. We recommend future research to further investigate transferring knowledge when working with less expressive input formats such as stripped binaries.