Abstract:Large language models (LLMs) have significantly transformed the educational landscape. As current plagiarism detection tools struggle to keep pace with LLMs' rapid advancements, the educational community faces the challenge of assessing students' true problem-solving abilities in the presence of LLMs. In this work, we explore a new paradigm for ensuring fair evaluation -- generating adversarial examples which preserve the structure and difficulty of the original questions aimed for assessment, but are unsolvable by LLMs. Focusing on the domain of math word problems, we leverage abstract syntax trees to structurally generate adversarial examples that cause LLMs to produce incorrect answers by simply editing the numeric values in the problems. We conduct experiments on various open- and closed-source LLMs, quantitatively and qualitatively demonstrating that our method significantly degrades their math problem-solving ability. We identify shared vulnerabilities among LLMs and propose a cost-effective approach to attack high-cost models. Additionally, we conduct automatic analysis on math problems and investigate the cause of failure to guide future research on LLM's mathematical capability.
Abstract:Pre-trained language models are effective in a variety of natural language tasks, but it has been argued their capabilities fall short of fully learning meaning or understanding language. To understand the extent to which language models can learn some form of meaning, we investigate their ability to capture semantics of code beyond superficial frequency and co-occurrence. In contrast to previous research on probing models for linguistic features, we study pre-trained models in a setting that allows for objective and straightforward evaluation of a model's ability to learn semantics. In this paper, we examine whether such models capture the semantics of code, which is precisely and formally defined. Through experiments involving the manipulation of code fragments, we show that code pre-trained models of code learn a robust representation of the computational semantics of code that goes beyond superficial features of form alone