Abstract:In this paper, authentication for mobile radio frequency identification (RFID) systems with low-cost tags is studied. Firstly, a diagonal block key matrix (DBKM) encryption algorithm is proposed, which effectively expands the feasible domain of the key space. Subsequently, in order to enhance the security, a self updating encryption order (SUEO) algorithm is conceived. To further weaken the correlation between plaintext and ciphertext, a self updating modulus (SUM) algorithm is constructed. Based on the above three algorithms, a new joint DBKM-SUEO-SUM matrix encryption algorithm is established, which intends to enhance security without the need of additional storage for extra key matrices. Making full use of the advantages of the proposed joint algorithm, a two-way RFID authentication protocol named DBKM-SUEO-SUM-RFID is proposed for mobile RFID systems. In addition, the Burrows-Abadi-Needham (BAN) logic and security analysis indicate that the newly proposed DBKM-SUEO-SUM-RFID protocol can effectively resist various typical attacks, such as replay attacks and de-synchronization. Finally, numerical results demonstrate that the DBKM-SUEO-SUM algorithm can save at least 90.46\% of tag storage compared to traditional algorithms, and thus, is friendly to be employed with low-cost RFID tags.
Abstract:Characterizing the patterns of errors that a system makes helps researchers focus future development on increasing its accuracy and robustness. We propose a novel form of "meta learning" that automatically learns interpretable rules that characterize the types of errors that a system makes, and demonstrate these rules' ability to help understand and improve two NLP systems. Our approach works by collecting error cases on validation data, extracting meta-features describing these samples, and finally learning rules that characterize errors using these features. We apply our approach to VilBERT, for Visual Question Answering, and RoBERTa, for Common Sense Question Answering. Our system learns interpretable rules that provide insights into systemic errors these systems make on the given tasks. Using these insights, we are also able to "close the loop" and modestly improve performance of these systems.
Abstract:We present MMOCR-an open-source toolbox which provides a comprehensive pipeline for text detection and recognition, as well as their downstream tasks such as named entity recognition and key information extraction. MMOCR implements 14 state-of-the-art algorithms, which is significantly more than all the existing open-source OCR projects we are aware of to date. To facilitate future research and industrial applications of text recognition-related problems, we also provide a large number of trained models and detailed benchmarks to give insights into the performance of text detection, recognition and understanding. MMOCR is publicly released at https://github.com/open-mmlab/mmocr.
Abstract:Systematic Generalization refers to a learning algorithm's ability to extrapolate learned behavior to unseen situations that are distinct but semantically similar to its training data. As shown in recent work, state-of-the-art deep learning models fail dramatically even on tasks for which they are designed when the test set is systematically different from the training data. We hypothesize that explicitly modeling the relations between objects in their contexts while learning their representations will help achieve systematic generalization. Therefore, we propose a novel method that learns objects' contextualized embeddings with dynamic message passing conditioned on the input natural language and end-to-end trainable with other downstream deep learning modules. To our knowledge, this model is the first one that significantly outperforms the provided baseline and reaches state-of-the-art performance on grounded-SCAN (gSCAN), a grounded natural language navigation dataset designed to require systematic generalization in its test splits.
Abstract:Answerer in Questioner's Mind (AQM) is an information-theoretic framework that has been recently proposed for task-oriented dialog systems. AQM benefits from asking a question that would maximize the information gain when it is asked. However, due to its intrinsic nature of explicitly calculating the information gain, AQM has a limitation when the solution space is very large. To address this, we propose AQM+ that can deal with a large-scale problem and ask a question that is more coherent to the current context of the dialog. We evaluate our method on GuessWhich, a challenging task-oriented visual dialog problem, where the number of candidate classes is near 10K. Our experimental results and ablation studies show that AQM+ outperforms the state-of-the-art models by a remarkable margin with a reasonable approximation. In particular, the proposed AQM+ reduces more than 60% of error as the dialog proceeds, while the comparative algorithms diminish the error by less than 6%. Based on our results, we argue that AQM+ is a general task-oriented dialog algorithm that can be applied for non-yes-or-no responses.