Abstract:In partial multi-label learning (PML), each data example is equipped with a candidate label set, which consists of multiple ground-truth labels and other false-positive labels. Recently, graph-based methods, which demonstrate a good ability to estimate accurate confidence scores from candidate labels, have been prevalent to deal with PML problems. However, we observe that existing graph-based PML methods typically adopt linear multi-label classifiers and thus fail to achieve superior performance. In this work, we attempt to remove several obstacles for extending them to deep models and propose a novel deep Partial multi-Label model with grAph-disambIguatioN (PLAIN). Specifically, we introduce the instance-level and label-level similarities to recover label confidences as well as exploit label dependencies. At each training epoch, labels are propagated on the instance and label graphs to produce relatively accurate pseudo-labels; then, we train the deep model to fit the numerical labels. Moreover, we provide a careful analysis of the risk functions to guarantee the robustness of the proposed model. Extensive experiments on various synthetic datasets and three real-world PML datasets demonstrate that PLAIN achieves significantly superior results to state-of-the-art methods.
Abstract:To enhance adversarial robustness, adversarial training learns deep neural networks on the adversarial variants generated by their natural data. However, as the training progresses, the training data becomes less and less attackable, undermining the robustness enhancement. A straightforward remedy is to incorporate more training data, but sometimes incurring an unaffordable cost. In this paper, to mitigate this issue, we propose the guided interpolation framework (GIF): in each epoch, the GIF employs the previous epoch's meta information to guide the data's interpolation. Compared with the vanilla mixup, the GIF can provide a higher ratio of attackable data, which is beneficial to the robustness enhancement; it meanwhile mitigates the model's linear behavior between classes, where the linear behavior is favorable to generalization but not to the robustness. As a result, the GIF encourages the model to predict invariantly in the cluster of each class. Experiments demonstrate that the GIF can indeed enhance adversarial robustness on various adversarial training methods and various datasets.
Abstract:We treat grammatical error correction (GEC) as a classification problem in this study, where for different types of errors, a target word is identified, and the classifier predicts the correct word form from a set of possible choices. We propose a novel neural network based feature representation and classification model, trained using large text corpora without human annotations. Specifically we use RNNs with attention to represent both the left and right context of a target word. All feature embeddings are learned jointly in an end-to-end fashion. Experimental results show that our novel approach outperforms other classifier methods on the CoNLL-2014 test set (F0.5 45.05%). Our model is simple but effective, and is suitable for industrial production.