Purdue University
Abstract:Since the seminal work of Andrey Kolmogorov in the early 1940's, imaging through atmospheric turbulence has grown from a pure scientific pursuit to an important subject across a multitude of civilian, space-mission, and national security applications. Fueled by the recent advancement of deep learning, the field is further experiencing a new wave of momentum. However, for these deep learning methods to perform well, new efforts are needed to build faster and more accurate computational models while at the same time maximizing the performance of image reconstruction. The book is written primarily for image processing engineers, computer vision scientists, and engineering students who are interested in the field of atmospheric turbulence, statistical optics, and image processing. The book can be used as a graduate text, or advanced topic classes for undergraduates.
Abstract:The proliferation of single-photon image sensors has opened the door to a plethora of high-speed and low-light imaging applications. However, data collected by these sensors are often 1-bit or few-bit, and corrupted by noise and strong motion. Conventional video restoration methods are not designed to handle this situation, while specialized quanta burst algorithms have limited performance when the number of input frames is low. In this paper, we introduce Quanta Video Restoration (QUIVER), an end-to-end trainable network built on the core ideas of classical quanta restoration methods, i.e., pre-filtering, flow estimation, fusion, and refinement. We also collect and publish I2-2000FPS, a high-speed video dataset with the highest temporal resolution of 2000 frames-per-second, for training and testing. On simulated and real data, QUIVER outperforms existing quanta restoration methods by a significant margin. Code and dataset available at https://github.com/chennuriprateek/Quanta_Video_Restoration-QUIVER-
Abstract:Depth estimation using a single-photon LiDAR is often solved by a matched filter. It is, however, error-prone in the presence of background noise. A commonly used technique to reject background noise is the rank-ordered mean (ROM) filter previously reported by Shin \textit{et al.} (2015). ROM rejects noisy photon arrival timestamps by selecting only a small range of them around the median statistics within its local neighborhood. Despite the promising performance of ROM, its theoretical performance limit is unknown. In this paper, we theoretically characterize the ROM performance by showing that ROM fails when the reflectivity drops below a threshold predetermined by the depth and signal-to-background ratio, and its accuracy undergoes a phase transition at the cutoff. Based on our theory, we propose an improved signal extraction technique by selecting tight timestamp clusters. Experimental results show that the proposed algorithm improves depth estimation performance over ROM by 3 orders of magnitude at the same signal intensities, and achieves high image fidelity at noise levels as high as 17 times that of signal.
Abstract:In single-photon light detection and ranging (SP-LiDAR) systems, the histogram distortion due to hardware dead time fundamentally limits the precision of depth estimation. To compensate for the dead time effects, the photon registration distribution is typically modeled based on the Markov chain self-excitation process. However, this is a discrete process and it is computationally expensive, thus hindering potential neural network applications and fast simulations. In this paper, we overcome the modeling challenge by proposing a continuous parametric model. We introduce a Gaussian-uniform mixture model (GUMM) and periodic padding to address high noise floors and noise slopes respectively. By deriving and implementing a customized expectation maximization (EM) algorithm, we achieve accurate histogram matching in scenarios that were deemed difficult in the literature.
Abstract:Single-photon Light Detection and Ranging (LiDAR) systems are often equipped with an array of detectors for improved spatial resolution and sensing speed. However, given a fixed amount of flux produced by the laser transmitter across the scene, the per-pixel Signal-to-Noise Ratio (SNR) will decrease when more pixels are packed in a unit space. This presents a fundamental trade-off between the spatial resolution of the sensor array and the SNR received at each pixel. Theoretical characterization of this fundamental limit is explored. By deriving the photon arrival statistics and introducing a series of new approximation techniques, the Mean Squared Error (MSE) of the maximum-likelihood estimator of the time delay is derived. The theoretical predictions align well with simulations and real data.
Abstract:The astonishing development of single-photon cameras has created an unprecedented opportunity for scientific and industrial imaging. However, the high data throughput generated by these 1-bit sensors creates a significant bottleneck for low-power applications. In this paper, we explore the possibility of generating a color image from a single binary frame of a single-photon camera. We evidently find this problem being particularly difficult to standard colorization approaches due to the substantial degree of exposure variation. The core innovation of our paper is an exposure synthesis model framed under a neural ordinary differential equation (Neural ODE) that allows us to generate a continuum of exposures from a single observation. This innovation ensures consistent exposure in binary images that colorizers take on, resulting in notably enhanced colorization. We demonstrate applications of the method in single-image and burst colorization and show superior generative performance over baselines. Project website can be found at https://vishal-s-p.github.io/projects/2023/generative_quanta_color.html.
Abstract:The astonishing growth of generative tools in recent years has empowered many exciting applications in text-to-image generation and text-to-video generation. The underlying principle behind these generative tools is the concept of diffusion, a particular sampling mechanism that has overcome some shortcomings that were deemed difficult in the previous approaches. The goal of this tutorial is to discuss the essential ideas underlying the diffusion models. The target audience of this tutorial includes undergraduate and graduate students who are interested in doing research on diffusion models or applying these models to solve other problems.
Abstract:Recovering images distorted by atmospheric turbulence is a challenging inverse problem due to the stochastic nature of turbulence. Although numerous turbulence mitigation (TM) algorithms have been proposed, their efficiency and generalization to real-world dynamic scenarios remain severely limited. Building upon the intuitions of classical TM algorithms, we present the Deep Atmospheric TUrbulence Mitigation network (DATUM). DATUM aims to overcome major challenges when transitioning from classical to deep learning approaches. By carefully integrating the merits of classical multi-frame TM methods into a deep network structure, we demonstrate that DATUM can efficiently perform long-range temporal aggregation using a recurrent fashion, while deformable attention and temporal-channel attention seamlessly facilitate pixel registration and lucky imaging. With additional supervision, tilt and blur degradation can be jointly mitigated. These inductive biases empower DATUM to significantly outperform existing methods while delivering a tenfold increase in processing speed. A large-scale training dataset, ATSyn, is presented as a co-invention to enable generalization in real turbulence. Our code and datasets will be available at \href{https://xg416.github.io/DATUM}{\textcolor{pink}{https://xg416.github.io/DATUM}}
Abstract:Blind deconvolution problems are severely ill-posed because neither the underlying signal nor the forward operator are not known exactly. Conventionally, these problems are solved by alternating between estimation of the image and kernel while keeping the other fixed. In this paper, we show that this framework is flawed because of its tendency to get trapped in local minima and, instead, suggest the use of a kernel estimation strategy with a non-blind solver. This framework is employed by a diffusion method which is trained to sample the blur kernel from the conditional distribution with guidance from a pre-trained non-blind solver. The proposed diffusion method leads to state-of-the-art results on both synthetic and real blur datasets.
Abstract:Non-blind image deconvolution has been studied for several decades but most of the existing work focuses on blur instead of noise. In photon-limited conditions, however, the excessive amount of shot noise makes traditional deconvolution algorithms fail. In searching for reasons why these methods fail, we present a systematic analysis of the Poisson non-blind deconvolution algorithms reported in the literature, covering both classical and deep learning methods. We compile a list of five "secrets" highlighting the do's and don'ts when designing algorithms. Based on this analysis, we build a proof-of-concept method by combining the five secrets. We find that the new method performs on par with some of the latest methods while outperforming some older ones.