Abstract:Recent advances have improved autonomous navigation and mapping under payload constraints, but current multi-robot inspection algorithms are unsuitable for nano-drones due to their need for heavy sensors and high computational resources. To address these challenges, we introduce ExploreBug, a novel hybrid frontier range bug algorithm designed to handle limited sensing capabilities for a swarm of nano-drones. This system includes three primary components: a mapping subsystem, an exploration subsystem, and a navigation subsystem. Additionally, an intra-swarm collision avoidance system is integrated to prevent collisions between drones. We validate the efficacy of our approach through extensive simulations and real-world exploration experiments involving up to seven drones in simulations and three in real-world settings, across various obstacle configurations and with a maximum navigation speed of 0.75 m/s. Our tests demonstrate that the algorithm efficiently completes exploration tasks, even with minimal sensing, across different swarm sizes and obstacle densities. Furthermore, our frontier allocation heuristic ensures an equal distribution of explored areas and paths traveled by each drone in the swarm. We publicly release the source code of the proposed system to foster further developments in mapping and exploration using autonomous nano drones.
Abstract:LiDAR semantic segmentation frameworks predominantly leverage geometry-based features to differentiate objects within a scan. While these methods excel in scenarios with clear boundaries and distinct shapes, their performance declines in environments where boundaries are blurred, particularly in off-road contexts. To address this, recent strides in 3D segmentation algorithms have focused on harnessing raw LiDAR intensity measurements to improve prediction accuracy. Despite these efforts, current learning-based models struggle to correlate the intricate connections between raw intensity and factors such as distance, incidence angle, material reflectivity, and atmospheric conditions. Building upon our prior work, this paper delves into the advantages of employing calibrated intensity (also referred to as reflectivity) within learning-based LiDAR semantic segmentation frameworks. We initially establish that incorporating reflectivity as an input enhances the existing LiDAR semantic segmentation model. Furthermore, we present findings that enable the model to learn to calibrate intensity can boost its performance. Through extensive experimentation on the off-road dataset Rellis-3D, we demonstrate notable improvements. Specifically, converting intensity to reflectivity results in a 4% increase in mean Intersection over Union (mIoU) when compared to using raw intensity in Off-road scenarios. Additionally, we also investigate the possible benefits of using calibrated intensity in semantic segmentation in urban environments (SemanticKITTI) and cross-sensor domain adaptation.
Abstract:This paper presents a novel system designed for 3D mapping and visual relocalization using 3D Gaussian Splatting. Our proposed method uses LiDAR and camera data to create accurate and visually plausible representations of the environment. By leveraging LiDAR data to initiate the training of the 3D Gaussian Splatting map, our system constructs maps that are both detailed and geometrically accurate. To mitigate excessive GPU memory usage and facilitate rapid spatial queries, we employ a combination of a 2D voxel map and a KD-tree. This preparation makes our method well-suited for visual localization tasks, enabling efficient identification of correspondences between the query image and the rendered image from the Gaussian Splatting map via normalized cross-correlation (NCC). Additionally, we refine the camera pose of the query image using feature-based matching and the Perspective-n-Point (PnP) technique. The effectiveness, adaptability, and precision of our system are demonstrated through extensive evaluation on the KITTI360 dataset.
Abstract:LiDAR is used in autonomous driving to provide 3D spatial information and enable accurate perception in off-road environments, aiding in obstacle detection, mapping, and path planning. Learning-based LiDAR semantic segmentation utilizes machine learning techniques to automatically classify objects and regions in LiDAR point clouds. Learning-based models struggle in off-road environments due to the presence of diverse objects with varying colors, textures, and undefined boundaries, which can lead to difficulties in accurately classifying and segmenting objects using traditional geometric-based features. In this paper, we address this problem by harnessing the LiDAR intensity parameter to enhance object segmentation in off-road environments. Our approach was evaluated in the RELLIS-3D data set and yielded promising results as a preliminary analysis with improved mIoU for classes "puddle" and "grass" compared to more complex deep learning-based benchmarks. The methodology was evaluated for compatibility across both Velodyne and Ouster LiDAR systems, assuring its cross-platform applicability. This analysis advocates for the incorporation of calibrated intensity as a supplementary input, aiming to enhance the prediction accuracy of learning based semantic segmentation frameworks. https://github.com/MOONLABIISERB/lidar-intensity-predictor/tree/main
Abstract:Existing pedestrian behavior prediction methods rely primarily on deep neural networks that utilize features extracted from video frame sequences. Although these vision-based models have shown promising results, they face limitations in effectively capturing and utilizing the dynamic spatio-temporal interactions between the target pedestrian and its surrounding traffic elements, crucial for accurate reasoning. Additionally, training these models requires manually annotating domain-specific datasets, a process that is expensive, time-consuming, and difficult to generalize to new environments and scenarios. The recent emergence of Large Multimodal Models (LMMs) offers potential solutions to these limitations due to their superior visual understanding and causal reasoning capabilities, which can be harnessed through semi-supervised training. GPT-4V(ision), the latest iteration of the state-of-the-art Large-Language Model GPTs, now incorporates vision input capabilities. This report provides a comprehensive evaluation of the potential of GPT-4V for pedestrian behavior prediction in autonomous driving using publicly available datasets: JAAD, PIE, and WiDEVIEW. Quantitative and qualitative evaluations demonstrate GPT-4V(ision)'s promise in zero-shot pedestrian behavior prediction and driving scene understanding ability for autonomous driving. However, it still falls short of the state-of-the-art traditional domain-specific models. Challenges include difficulties in handling small pedestrians and vehicles in motion. These limitations highlight the need for further research and development in this area.
Abstract:Off-road robotics have traditionally utilized lidar for local navigation due to its accuracy and high resolution. However, the limitations of lidar, such as reduced performance in harsh environmental conditions and limited range, have prompted the exploration of alternative sensing technologies. This paper investigates the potential of radar for off-road local navigation, as it offers the advantages of a longer range and the ability to penetrate dust and light vegetation. We adapt existing lidar-based methods for radar and evaluate the performance in comparison to lidar under various off-road conditions. We show that radar can provide a significant range advantage over lidar while maintaining accuracy for both ground plane estimation and obstacle detection. And finally, we demonstrate successful autonomous navigation at a speed of 2.5 m/s over a path length of 350 m using only radar for ground plane estimation and obstacle detection.
Abstract:As the demand for autonomous navigation in off-road environments increases, the need for effective solutions to understand these surroundings becomes essential. In this study, we confront the inherent complexities of semantic segmentation in RADAR data for off-road scenarios. We present a novel pipeline that utilizes LIDAR data and an existing annotated off-road LIDAR dataset for generating RADAR labels, in which the RADAR data are represented as images. Validated with real-world datasets, our pragmatic approach underscores the potential of RADAR technology for navigation applications in off-road environments.
Abstract:This work presents a centralized multi-IMU filter framework with online intrinsic and extrinsic calibration for unsynchronized inertial measurement units that is robust against changes in calibration parameters. The novel EKF-based method estimates the positional and rotational offsets of the system of sensors as well as their intrinsic biases without the use of rigid body geometric constraints. Additionally, the filter is flexible in the total number of sensors used while leveraging the commonly used MSCKF framework for camera measurements. The filter framework has been validated using Monte Carlo simulation as well as experimentally. In both simulations and experiments, using multiple IMU measurement streams within the proposed filter framework outperforms the use of a single IMU in a filter prediction step while also producing consistent and accurate estimates of initial calibration errors. Compared to current state-of-the-art optimizers, the filter produces similar intrinsic and extrinsic calibration parameters for each sensor. Finally, an open source repository has been provided at https://github.com/unmannedlab/ekf-cal containing both the online estimator and the simulation used for testing and evaluation.
Abstract:Robust and accurate tracking and localization of road users like pedestrians and cyclists is crucial to ensure safe and effective navigation of Autonomous Vehicles (AVs), particularly so in urban driving scenarios with complex vehicle-pedestrian interactions. Existing datasets that are useful to investigate vehicle-pedestrian interactions are mostly image-centric and thus vulnerable to vision failures. In this paper, we investigate Ultra-wideband (UWB) as an additional modality for road users' localization to enable a better understanding of vehicle-pedestrian interactions. We present WiDEVIEW, the first multimodal dataset that integrates LiDAR, three RGB cameras, GPS/IMU, and UWB sensors for capturing vehicle-pedestrian interactions in an urban autonomous driving scenario. Ground truth image annotations are provided in the form of 2D bounding boxes and the dataset is evaluated on standard 2D object detection and tracking algorithms. The feasibility of UWB is evaluated for typical traffic scenarios in both line-of-sight and non-line-of-sight conditions using LiDAR as ground truth. We establish that UWB range data has comparable accuracy with LiDAR with an error of 0.19 meters and reliable anchor-tag range data for up to 40 meters in line-of-sight conditions. UWB performance for non-line-of-sight conditions is subjective to the nature of the obstruction (trees vs. buildings). Further, we provide a qualitative analysis of UWB performance for scenarios susceptible to intermittent vision failures. The dataset can be downloaded via https://github.com/unmannedlab/UWB_Dataset.
Abstract:To ensure safe autonomous driving in urban environments with complex vehicle-pedestrian interactions, it is critical for Autonomous Vehicles (AVs) to have the ability to predict pedestrians' short-term and immediate actions in real-time. In recent years, various methods have been developed to study estimating pedestrian behaviors for autonomous driving scenarios, but there is a lack of clear definitions for pedestrian behaviors. In this work, the literature gaps are investigated and a taxonomy is presented for pedestrian behavior characterization. Further, a novel multi-task sequence to sequence Transformer encoders-decoders (TF-ed) architecture is proposed for pedestrian action and trajectory prediction using only ego vehicle camera observations as inputs. The proposed approach is compared against an existing LSTM encoders decoders (LSTM-ed) architecture for action and trajectory prediction. The performance of both models is evaluated on the publicly available Joint Attention Autonomous Driving (JAAD) dataset, CARLA simulation data as well as real-time self-driving shuttle data collected on university campus. Evaluation results illustrate that the proposed method reaches an accuracy of 81% on action prediction task on JAAD testing data and outperforms the LSTM-ed by 7.4%, while LSTM counterpart performs much better on trajectory prediction task for a prediction sequence length of 25 frames.