Abstract:With the advent of social media, fun selfie filters have come into tremendous mainstream use affecting the functioning of facial biometric systems as well as image recognition systems. These filters vary from beautification filters and Augmented Reality (AR)-based filters to filters that modify facial landmarks. Hence, there is a need to assess the impact of such filters on the performance of existing face recognition systems. The limitation associated with existing solutions is that these solutions focus more on the beautification filters. However, the current AR-based filters and filters which distort facial key points are in vogue recently and make the faces highly unrecognizable even to the naked eye. Also, the filters considered are mostly obsolete with limited variations. To mitigate these limitations, we aim to perform a holistic impact analysis of the latest filters and propose an user recognition model with the filtered images. We have utilized a benchmark dataset for baseline images, and applied the latest filters over them to generate a beautified/filtered dataset. Next, we have introduced a model FaceFilterNet for beautified user recognition. In this framework, we also utilize our model to comment on various attributes of the person including age, gender, and ethnicity. In addition, we have also presented a filter-wise impact analysis on face recognition, age estimation, gender, and ethnicity prediction. The proposed method affirms the efficacy of our dataset with an accuracy of 87.25% and an optimal accuracy for facial attribute analysis.
Abstract:In this paper, we discuss the development of an annotation schema to build datasets for evaluating the offline harm potential of social media texts. We define "harm potential" as the potential for an online public post to cause real-world physical harm (i.e., violence). Understanding that real-world violence is often spurred by a web of triggers, often combining several online tactics and pre-existing intersectional fissures in the social milieu, to result in targeted physical violence, we do not focus on any single divisive aspect (i.e., caste, gender, religion, or other identities of the victim and perpetrators) nor do we focus on just hate speech or mis/dis-information. Rather, our understanding of the intersectional causes of such triggers focuses our attempt at measuring the harm potential of online content, irrespective of whether it is hateful or not. In this paper, we discuss the development of a framework/annotation schema that allows annotating the data with different aspects of the text including its socio-political grounding and intent of the speaker (as expressed through mood and modality) that together contribute to it being a trigger for offline harm. We also give a comparative analysis and mapping of our framework with some of the existing frameworks.
Abstract:Key value pair (KVP) extraction or Named Entity Recognition(NER) from visually rich documents has been an active area of research in document understanding and data extraction domain. Several transformer based models such as LayoutLMv2, LayoutLMv3, and LiLT have emerged achieving state of the art results. However, addition of even a single new class to the existing model requires (a) re-annotation of entire training dataset to include this new class and (b) retraining the model again. Both of these issues really slow down the deployment of updated model. \\ We present \textbf{ProtoNER}: Prototypical Network based end-to-end KVP extraction model that allows addition of new classes to an existing model while requiring minimal number of newly annotated training samples. The key contributions of our model are: (1) No dependency on dataset used for initial training of the model, which alleviates the need to retain original training dataset for longer duration as well as data re-annotation which is very time consuming task, (2) No intermediate synthetic data generation which tends to add noise and results in model's performance degradation, and (3) Hybrid loss function which allows model to retain knowledge about older classes as well as learn about newly added classes.\\ Experimental results show that ProtoNER finetuned with just 30 samples is able to achieve similar results for the newly added classes as that of regular model finetuned with 2600 samples.
Abstract:The extensive utilization of biometric authentication systems have emanated attackers / imposters to forge user identity based on morphed images. In this attack, a synthetic image is produced and merged with genuine. Next, the resultant image is user for authentication. Numerous deep neural convolutional architectures have been proposed in literature for face Morphing Attack Detection (MADs) to prevent such attacks and lessen the risks associated with them. Although, deep learning models achieved optimal results in terms of performance, it is difficult to understand and analyse these networks since they are black box/opaque in nature. As a consequence, incorrect judgments may be made. There is, however, a dearth of literature that explains decision-making methods of black box deep learning models for biometric Presentation Attack Detection (PADs) or MADs that can aid the biometric community to have trust in deep learning-based biometric systems for identification and authentication in various security applications such as border control, criminal database establishment etc. In this work, we present a novel visual explanation approach named Ensemble XAI integrating Saliency maps, Class Activation Maps (CAM) and Gradient-CAM (Grad-CAM) to provide a more comprehensive visual explanation for a deep learning prognostic model (EfficientNet-B1) that we have employed to predict whether the input presented to a biometric authentication system is morphed or genuine. The experimentations have been performed on three publicly available datasets namely Face Research Lab London Set, Wide Multi-Channel Presentation Attack (WMCA), and Makeup Induced Face Spoofing (MIFS). The experimental evaluations affirms that the resultant visual explanations highlight more fine-grained details of image features/areas focused by EfficientNet-B1 to reach decisions along with appropriate reasoning.
Abstract:In this paper we discuss an in-progress work on the development of a speech corpus for four low-resource Indo-Aryan languages -- Awadhi, Bhojpuri, Braj and Magahi using the field methods of linguistic data collection. The total size of the corpus currently stands at approximately 18 hours (approx. 4-5 hours each language) and it is transcribed and annotated with grammatical information such as part-of-speech tags, morphological features and Universal dependency relationships. We discuss our methodology for data collection in these languages, most of which was done in the middle of the COVID-19 pandemic, with one of the aims being to generate some additional income for low-income groups speaking these languages. In the paper, we also discuss the results of the baseline experiments for automatic speech recognition system in these languages.
Abstract:The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements made on several fronts over the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 67 new languages, including 30 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g. missing gender and macron information. We have also amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive. In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.
Abstract:In this paper, we discuss the development of treebanks for two low-resourced Indian languages - Magahi and Braj based on the Universal Dependencies framework. The Magahi treebank contains 945 sentences and Braj treebank around 500 sentences marked with their lemmas, part-of-speech, morphological features and universal dependencies. This paper gives a description of the different dependency relationship found in the two languages and give some statistics of the two treebanks. The dataset will be made publicly available on Universal Dependency (UD) repository (https://github.com/UniversalDependencies/UD_Magahi-MGTB/tree/master) in the next(v2.10) release.
Abstract:In the present paper, we will present a survey of the language resources and technologies available for the non-scheduled and endangered languages of India. While there have been different estimates from different sources about the number of languages in India, it could be assumed that there are more than 1,000 languages currently being spoken in India. However barring some of the 22 languages included in the 8th Schedule of the Indian Constitution (called the scheduled languages), there is hardly any substantial resource or technology available for the rest of the languages. Nonetheless there have been some individual attempts at developing resources and technologies for the different languages across the country. Of late, some financial support has also become available for the endangered languages. In this paper, we give a summary of the resources and technologies for those Indian languages which are not included in the 8th schedule of the Indian Constitution and/or which are endangered.
Abstract:In the present paper, we will present the results of an acoustic analysis of political discourse in Hindi and discuss some of the conventionalised acoustic features of aggressive speech regularly employed by the speakers of Hindi and English. The study is based on a corpus of slightly over 10 hours of political discourse and includes debates on news channel and political speeches. Using this study, we develop two automatic classification systems for identifying aggression in English and Hindi speech, based solely on an acoustic model. The Hindi classifier, trained using 50 hours of annotated speech, and English classifier, trained using 40 hours of annotated speech, achieve a respectable accuracy of over 73% and 66% respectively. In this paper, we discuss the development of this annotated dataset, the experiments for developing the classifier and discuss the errors that it makes.
Abstract:In the proposed demo, we will present a new software - Linguistic Field Data Management and Analysis System - LiFE (https://github.com/kmi-linguistics/life) - an open-source, web-based linguistic data management and analysis application that allows for systematic storage, management, sharing and usage of linguistic data collected from the field. The application allows users to store lexical items, sentences, paragraphs, audio-visual content with rich glossing / annotation; generate interactive and print dictionaries; and also train and use natural language processing tools and models for various purposes using this data. Since its a web-based application, it also allows for seamless collaboration among multiple persons and sharing the data, models, etc with each other. The system uses the Python-based Flask framework and MongoDB in the backend and HTML, CSS and Javascript at the frontend. The interface allows creation of multiple projects that could be shared with the other users. At the backend, the application stores the data in RDF format so as to allow its release as Linked Data over the web using semantic web technologies - as of now it makes use of the OntoLex-Lemon for storing the lexical data and Ligt for storing the interlinear glossed text and then internally linking it to the other linked lexicons and databases such as DBpedia and WordNet. Furthermore it provides support for training the NLP systems using scikit-learn and HuggingFace Transformers libraries as well as make use of any model trained using these libraries - while the user interface itself provides limited options for tuning the system, an externally-trained model could be easily incorporated within the application; similarly the dataset itself could be easily exported into a standard machine-readable format like JSON or CSV that could be consumed by other programs and pipelines.