Abstract:Hannan Limitation successfully links the directivity characteristics of 2D arrays with the aperture gain limit, providing the radiation efficiency upper limit for large 2D planar antenna arrays. This demonstrates the inevitable radiation efficiency degradation caused by mutual coupling effects between array elements. However, this limitation is derived based on the assumption of infinitely large 2D arrays, which means that it is not an accurate law for small-size arrays. In this paper, we extend this theory and propose an estimation formula for the radiation efficiency upper limit of finite-sized 2D arrays. Furthermore, we analyze a 3D array structure consisting of two parallel 2D arrays. Specifically, we provide evaluation formulas for the mutual coupling strengths for both infinite and finite size arrays and derive the fundamental efficiency limit of 3D arrays. Moreover, based on the established gain limit of antenna arrays with fixed aperture sizes, we derive the achievable gain limit of finite size 3D arrays. Besides the performance analyses, we also investigate the spatial radiation characteristics of the considered 3D array structure, offering a feasible region for 2D phase settings under a given energy attenuation threshold. Through simulations, we demonstrate the effectiveness of our proposed theories and gain advantages of 3D arrays for better spatial coverage under various scenarios.
Abstract:Gaze plays a crucial role in revealing human attention and intention, shedding light on the cognitive processes behind human actions. The integration of gaze guidance with the dynamics of hand-object interactions boosts the accuracy of human motion prediction. However, the lack of datasets that capture the intricate relationship and consistency among gaze, hand, and object movements remains a substantial hurdle. In this paper, we introduce the first Gaze-guided Hand-Object Interaction dataset, GazeHOI, and present a novel task for synthesizing gaze-guided hand-object interactions. Our dataset, GazeHOI, features simultaneous 3D modeling of gaze, hand, and object interactions, comprising 479 sequences with an average duration of 19.1 seconds, 812 sub-sequences, and 33 objects of various sizes. We propose a hierarchical framework centered on a gaze-guided hand-object interaction diffusion model, named GHO-Diffusion. In the pre-diffusion phase, we separate gaze conditions into spatial-temporal features and goal pose conditions at different levels of information granularity. During the diffusion phase, two gaze-conditioned diffusion models are stacked to simplify the complex synthesis of hand-object motions. Here, the object motion diffusion model generates sequences of object motions based on gaze conditions, while the hand motion diffusion model produces hand motions based on the generated object motion. To improve fine-grained goal pose alignment, we introduce a Spherical Gaussian constraint to guide the denoising step. In the subsequent post-diffusion phase, we optimize the generated hand motions using contact consistency. Our extensive experiments highlight the uniqueness of our dataset and the effectiveness of our approach.
Abstract:It is well known that there is inherent radiation pattern distortion for the commercial base station antenna array, which usually needs three antenna sectors to cover the whole space. To eliminate pattern distortion and further enhance beamforming performance, we propose an electromagnetic hybrid beamforming (EHB) scheme based on a three-dimensional (3D) superdirective holographic antenna array. Specifically, EHB consists of antenna excitation current vectors (analog beamforming) and digital precoding matrices, where the implementation of analog beamforming involves the real-time adjustment of the radiation pattern to adapt it to the dynamic wireless environment. Meanwhile, the digital beamforming is optimized based on the channel characteristics of analog beamforming to further improve the achievable rate of communication systems. An electromagnetic channel model incorporating array radiation patterns and the mutual coupling effect is also developed to evaluate the benefits of our proposed scheme. Simulation results demonstrate that our proposed EHB scheme with a 3D holographic array achieves a relatively flat superdirective beamforming gain and allows for programmable focusing directions throughout the entire spatial domain. Furthermore, they also verify that the proposed scheme achieves a sum rate gain of over 150% compared to traditional beamforming algorithms.
Abstract:Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirements of the sixth-generation (6G) communication systems is the holographic multiple-input multiple-output (MIMO) surface (HMIMOS), which will actualize holographic radios with reasonable power consumption and fabrication cost. An HMIMOS is a nearly continuous aperture that incorporates reconfigurable and sub-wavelength-spaced antennas and/or metamaterials. Such surfaces comprising dense electromagnetic (EM) excited elements are capable of recording and manipulating impinging fields with utmost flexibility and precision, as well as with reduced cost and power consumption, thereby shaping arbitrary-intended EM waves with high energy efficiency. The powerful EM processing capability of HMIMOS opens up the possibility of wireless communications of holographic imaging level, paving the way for signal processing techniques realized in the EM domain, possibly in conjunction with their digital-domain counterparts. However, in spite of the significant potential, the studies on HMIMOS-based wireless systems are still at an initial stage. In this survey, we present a comprehensive overview of the latest advances in holographic MIMO communications, with a special focus on their physical aspects, theoretical foundations, and enabling technologies. We also compare HMIMOS systems with conventional multi-antenna technologies, especially massive MIMO systems, present various promising synergies of HMIMOS with current and future candidate technologies, and provide an extensive list of research challenges and open directions.
Abstract:The dependency tree of a natural language sentence can capture the interactions between semantics and words. However, it is unclear whether those methods which exploit such dependency information for semantic parsing can be combined to achieve further improvement and the relationship of those methods when they combine. In this paper, we examine three methods to incorporate such dependency information in a Transformer based semantic parser and empirically study their combinations. We first replace standard self-attention heads in the encoder with parent-scaled self-attention (PASCAL) heads, i.e., the ones that can attend to the dependency parent of each token. Then we concatenate syntax-aware word representations (SAWRs), i.e., the intermediate hidden representations of a neural dependency parser, with ordinary word embedding to enhance the encoder. Later, we insert the constituent attention (CA) module to the encoder, which adds an extra constraint to attention heads that can better capture the inherent dependency structure of input sentences. Transductive ensemble learning (TEL) is used for model aggregation, and an ablation study is conducted to show the contribution of each method. Our experiments show that CA is complementary to PASCAL or SAWRs, and PASCAL + CA provides state-of-the-art performance among neural approaches on ATIS, GEO, and JOBS.