Future wireless systems are envisioned to create an endogenously holography-capable, intelligent, and programmable radio propagation environment, that will offer unprecedented capabilities for high spectral and energy efficiency, low latency, and massive connectivity. A potential and promising technology for supporting the expected extreme requirements of the sixth-generation (6G) communication systems is the holographic multiple-input multiple-output (MIMO) surface (HMIMOS), which will actualize holographic radios with reasonable power consumption and fabrication cost. An HMIMOS is a nearly continuous aperture that incorporates reconfigurable and sub-wavelength-spaced antennas and/or metamaterials. Such surfaces comprising dense electromagnetic (EM) excited elements are capable of recording and manipulating impinging fields with utmost flexibility and precision, as well as with reduced cost and power consumption, thereby shaping arbitrary-intended EM waves with high energy efficiency. The powerful EM processing capability of HMIMOS opens up the possibility of wireless communications of holographic imaging level, paving the way for signal processing techniques realized in the EM domain, possibly in conjunction with their digital-domain counterparts. However, in spite of the significant potential, the studies on HMIMOS-based wireless systems are still at an initial stage. In this survey, we present a comprehensive overview of the latest advances in holographic MIMO communications, with a special focus on their physical aspects, theoretical foundations, and enabling technologies. We also compare HMIMOS systems with conventional multi-antenna technologies, especially massive MIMO systems, present various promising synergies of HMIMOS with current and future candidate technologies, and provide an extensive list of research challenges and open directions.